Outlook for the Future

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 25)


The nature of the pharmaceutical industry is constantly evolving. There is currently a strong demand for new therapeutics to be simultaneously safer, more effective, and less expensive. These seemingly incompatible expectations will likely increase over time, and balancing them will require continuous innovation, such as novel technologies to expand the so-called “druggable” chemical space and new insights to reduce the number and severity of costly clinical failures. As a result, the industry has begun pivoting away from the traditional therapeutic product profile: once-a-day, orally administered small molecule drugs intended for large patient populations. Instead, there is a renewed focus toward more niche or specialty areas, using alternative molecular therapeutic modalities administered with novel delivery technologies, often via non-oral routes to smaller and more specific patient populations.

The shift from traditional to specialty drug candidates has also resulted in larger organizations focusing less on establishing new internal drug discovery expertise and more on leveraging the existing clinical expertise toward new therapies discovered by external partners. Such partners include specialized smaller pharmaceutical organizations or academic groups with novel molecular assets, targeting capabilities or even whole drug discovery platforms. The size and lack of experience of these small entities often necessitate that their technologies be developed with the assistance of larger, more established pharmaceutical organizations. The successful execution of this approach requires a collaborative mind-set to collectively overcome the interconnected drug discovery and development challenges. This includes assessing the progressability and developability of promising drug candidates as well as ensuring pertinent clinical information is translated upstream into continuing discovery efforts.

Despite implementing significant changes, a number of challenges continue to impede the industry’s productivity improvement efforts. These include significant knowledge gaps, effective decision-making in an uncertain environment, and competing stakeholder interests. This chapter explores how these issues were, are, and may be addressed in the past, present, and future.


Pharmaceutical industry productivity Scientific knowledge gap Drug candidate selection Risk assessment Stakeholder interests Drug discovery Effectiveness Efficiency Attrition 


  1. 1.
    Chandler A. Shaping the industrial century: the remarkable story of the modern chemical and pharmaceutical industries. Cambridge, MA: Harvard University Press; 2005.CrossRefGoogle Scholar
  2. 2.
    Rowland M, Noe C, Smith DA, et al. Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. J Pharm Sci. 2012;101(11):4075.PubMedCrossRefGoogle Scholar
  3. 3.
    Winquist RJ, Mullane K, Williams M. The fall and rise of pharmacology – (re-)defining the discipline? Biochem Pharmacol. 2014;87(1):4.PubMedCrossRefGoogle Scholar
  4. 4.
    Dimasi JA. Pharmaceutical r&d performance by firm size: approval success rates and economic returns. Am J Ther. 2014;21(1):26.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaitin KI, Dimasi JA. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol Ther. 2011;89(2):183.PubMedCrossRefGoogle Scholar
  6. 6.
    Khanna I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today. 2012;17(19-20):1088.PubMedCrossRefGoogle Scholar
  7. 7.
    Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475.PubMedCrossRefGoogle Scholar
  8. 8.
    Herper M. Who’s the best in drug research? 22 companies ranked. on May 22, 2014. Forbes. 2014.
  9. 9.
    Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10(6):428.PubMedCrossRefGoogle Scholar
  10. 10.
    Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191.PubMedCrossRefGoogle Scholar
  11. 11.
    Jogalekar A. Why drugs are expensive: It’s the science, stupid. Sci Am. 2014a.
  12. 12.
    Abou-Gharbia M, Childers WE. Discovery of innovative therapeutics: today’s realities and tomorrow’s vision. 1. Criticisms faced by the pharmaceutical industry. J Med Chem. 2013;56:5659.PubMedCrossRefGoogle Scholar
  13. 13.
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40.PubMedCrossRefGoogle Scholar
  14. 14.
    Mullard A. New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov. 2014;13:877.Google Scholar
  15. 15.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve RD productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010;9(3):203.PubMedGoogle Scholar
  16. 16.
    Watkins P. Drug safety sciences and the bottleneck in drug development. Clin Pharmacol Ther. 2011;89(6):788.PubMedCrossRefGoogle Scholar
  17. 17.
    Lowe D. Grit and giving up, experience and ignorance. In The pipeline blog, science translational medicine AAAS. 2016b.Google Scholar
  18. 18.
    Moreno L, Pearson ADJ. How can attrition rates be reduced in cancer drug discovery? Expert Opin Drug Discovery. 2013;8(4):363.CrossRefGoogle Scholar
  19. 19.
    Lowe D. Are things getting any better in the clinic? In The pipeline blog, science translational medicine AAAS. 2016a.
  20. 20.
    Lowe D. The immuno-oncology traffic jam. In The pipeline blog, science translational medicine AAAS. 2016c.
  21. 21.
    Lowe D. The sunk cost fallacy. In The pipeline blog, science translational medicine AAAS. 2016d.
  22. 22.
    Mullard A. Parsing clinical success rates. Nat Rev Drug Discov. 2016;15:447.Google Scholar
  23. 23.
    Thayer A. More drugs are succeeding in clinical trials. Chem Eng News 2016;94(22):13.
  24. 24.
    Kesselheim AS, Wang B, Avorn J. Defining innovativeness in drug development: a systematic review. Clin Pharmacol Ther. 2013;94(3):336.PubMedCrossRefGoogle Scholar
  25. 25.
    Moridani M, Harirforoosh S. Drug development and discovery: challenges and opportunities. Drug Discov Today. 2014;19(11):1679.PubMedCrossRefGoogle Scholar
  26. 26.
    Morgan S, Grootendorst P, Lexchine J, Cunningham C, Greyson D. The cost of drug development: a systematic review. Health Policy. 2011;100(1):4.PubMedCrossRefGoogle Scholar
  27. 27.
    Jogalekar A. New cystic fibrosis medication a triumph of drug discovery. Sci Am. 2014c.
  28. 28.
    Baer D. Einstein’s problem-solving formula, and why you’re doing it all wrong. Fast Company. 2013. Accessed 26 Mar 2016.
  29. 29.
    Mann D. You cannot solve what you don't understand. 2013.
  30. 30.
    Shimura H, Masuda S, Kimura H. Research and development productivity map: visualization of industry status. J Clin Pharm Ther. 2014;39(2):175.PubMedCrossRefGoogle Scholar
  31. 31.
    Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863.PubMedCrossRefGoogle Scholar
  32. 32.
    Empfield JR, Leeson PD. Lessons learned from candidate drug attrition. IDrugs. 2010;13(12):869.PubMedGoogle Scholar
  33. 33.
    Leeson PD. Molecular inflation, attrition and the rule of five. Adv Drug Deliv Rev. 2016;101:22.PubMedCrossRefGoogle Scholar
  34. 34.
    Leeson PD, St-Gallay SA. The influence of the 'organizational factor' on compound quality in drug discovery. Nat Rev Drug Discov. 2011;10(10):749.PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SDA. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today. 2012;17(42257):419.PubMedCrossRefGoogle Scholar
  36. 36.
    Smietana K, Ekstrom L, Jeffery B, Møller M. Improving R&D productivity. Nat Rev Drug Discov. 2015;14:455–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Herper M. The cost of creating a new drug now $5 billion, pushing big pharma to change. Forbes. 2013.
  38. 38.
    Buchan NS, Rajpal DK, Webster Y, Alatorre C, Gudivada RC, Zheng C, Sanseau P, Koehler J. The role of translational bioinformatics in drug discovery. Drug Discov Today. 2011;16(42257):426.PubMedCrossRefGoogle Scholar
  39. 39.
    Mullane K, Winquist RJ, Williams M. Translational paradigms in pharmacology and drug discovery. Biochem Pharmacol. 2014;87(1):189.PubMedCrossRefGoogle Scholar
  40. 40.
    Wehling M. Drug development in the light of translational science: Shine or shade? Drug Discov Today. 2011;16(23-24):1076.PubMedCrossRefGoogle Scholar
  41. 41.
    Mullane K, Williams M. Translational semantics and infrastructure: a search for the emperor's new clothes? Drug Discov Today. 2012;17(42257):459.PubMedCrossRefGoogle Scholar
  42. 42.
    Janero DR. Productive university, industry, and government relationships in preclinical drug discovery and development: considerations toward a synergistic lingua franca. Expert Opin Drug Discovery. 2012;7(6):449.CrossRefGoogle Scholar
  43. 43.
    Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags in translational research. J R Soc Med. 2011;104(12):510.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Begley G, Ellis L. Drug development: raise standards for preclinical cancer research. Nature. 2012;483:531.PubMedCrossRefGoogle Scholar
  45. 45.
    Steckler T. Preclinical data reproducibility for R&D – the challenge for neuroscience. Psychopharmacology. 2015;232(2):317.PubMedCrossRefGoogle Scholar
  46. 46.
  47. 47.
    Freedman L, Cockburn I, Simcoe T. The economics of reproducibility in preclinical research. PLOS Biology. 2015;13:e1002165.
  48. 48.
    Baker M. 1,500 scientists lift the lid on reproducibility. Nature. 2016. Accessed 25 May 2016.
  49. 49.
    Bespalov A, Steckler T, Altevogt B, et al. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat Rev Drug Discov. 2016;15:516.PubMedCrossRefGoogle Scholar
  50. 50.
    Freedman LP, Gibson MC. The impact of preclinical irreproducibility on drug development. Clin Pharmacol Ther. 2015;97(1):16.PubMedCrossRefGoogle Scholar
  51. 51.
    Waldman SA, Hohl RJ, Kearns GL, Swan SJ, Terzic A. Clinical pharmacology as a foundation for translational science. Clin Pharmacol Ther. 2011;90(1):10.PubMedCrossRefGoogle Scholar
  52. 52.
    Alqahtani S, Mohamed LA, Kaddoumi A. Experimental models for predicting drug absorption and metabolism. Expert Opin Drug Metab Toxicol. 2013;9(10):1241.PubMedCrossRefGoogle Scholar
  53. 53.
    Breyer MD. Improving productivity of modern-day drug discovery. Expert Opin Drug Discovery. 2014;9(2):115.CrossRefGoogle Scholar
  54. 54.
    Harris R. How mouse studies lead medical research down dead ends. NPR. 2014. Accessed 8 Apr 2014.
  55. 55.
    Stockton N. Science has a huge diversity problem … in lab mice. 2016. Wiredcom.
  56. 56.
    Kiermer V. The “crisis” in scientific results is a matter of biology. Sci Am. 2014.
  57. 57.
    Ewart L, Gallacher DJ, Gintant G, Guillon J-M, Leishman D, Levesque P, McMahon N, Mylecraine L, Sanders M, Suter W, Wallis R, Valentin J-P. How do the top 12 pharmaceutical companies operate safety pharmacology? J Pharmacol Toxicol Methods. 2012;66(2):66.PubMedCrossRefGoogle Scholar
  58. 58.
    Peters JU. Polypharmacology-foe or friend? J Med Chem. 2013;56(22):8955.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson DE. Fusion of nonclinical and clinical data to predict human drug safety. Expert Rev Clin Pharmacol. 2013;6(2):185.PubMedCrossRefGoogle Scholar
  60. 60.
    Muller PY, Milton MN. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov. 2012;11(10):751.PubMedCrossRefGoogle Scholar
  61. 61.
    Wager TT, Kormos BL, Brady JT, et al. Improving the odds of success in drug discovery: choosing the best compounds for in vivo toxicology studies. J Med Chem. 2013;56(23):9771.PubMedCrossRefGoogle Scholar
  62. 62.
    MacArron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DVS, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188.PubMedCrossRefGoogle Scholar
  63. 63.
    Geppert T, Koeppen H. Biological networks and drug discovery – where do we stand? Drug Dev Res. 2014;75(5):271.PubMedCrossRefGoogle Scholar
  64. 64.
    Sams-Dodd F. Is poor research the cause of the declining productivity of the pharmaceutical industry? An industry in need of a paradigm shift. Drug Discov Today. 2013;18(42130):211.PubMedCrossRefGoogle Scholar
  65. 65.
    Csermely P, Korcsmaros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther. 2013;138(3):333.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13(8):577.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee JA, Uhlik MT, Moxham CM, et al. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012;55(10):4527.PubMedCrossRefGoogle Scholar
  68. 68.
    Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery-past, present and future. Nat Rev Drug Discov. 2014;13(8):588.PubMedCrossRefGoogle Scholar
  69. 69.
    Patel AC. Clinical relevance of target identity and biology: implications for drug discovery and development. J Biomol Screen. 2013;18(10):1164.PubMedCrossRefGoogle Scholar
  70. 70.
    Swinney DC. Phenotypic vs target-based drug discovery for first-in-class medicines. Clin Pharmacol Ther. 2013;93(4):299.PubMedCrossRefGoogle Scholar
  71. 71.
    Swinney DC. The value of translational biomarkers to phenotypic assays. Front Pharmacol. 2014;5:171.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Viayna E, Sola I, Di Pietro O, Munoz-Torrero D. Human disease and drug pharmacology, complex as real life. Curr Med Chem. 2013;20(13):1623.PubMedCrossRefGoogle Scholar
  73. 73.
    Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18(21–22):1067.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Grasela TH, Slusser R. The paradox of scientific excellence and the search for productivity in pharmaceutical research and development. Clin Pharmacol Ther. 2014;95(5):521.PubMedCrossRefGoogle Scholar
  75. 75.
    Kashdan T. Companies value curiosity but stifle it anyway. HBR. 2015.
  76. 76.
    Tabrizi B. Seventy five percent of cross functional teams are dysfunctional. HBR. 2015.
  77. 77.
    Lendrem D, Lendrem B, Peck R, et al. Progression-seeking bias and rational optimism in research and development. Nat Rev Drug Discov. 2015a;14:219–21.
  78. 78.
    Kinch MS, Merkel J, Umlauf S. Trends in pharmaceutical targeting of clinical indications: 1930–2013. Drug Discov Today. 2014b;19(11):1682.PubMedCrossRefGoogle Scholar
  79. 79.
    Grinnell F. Rethink our approach to assessing risk. Nature. 2015;522(7556):257.
  80. 80.
    Chadwick AT, Segall MD. Overcoming psychological barriers to good discovery decisions. Drug Discov Today. 2010;15(13-14):561.PubMedCrossRefGoogle Scholar
  81. 81.
    Sarewitz D. Beware the creeping cracks of bias. Nature. 2012;485(7397):49.
  82. 82.
    Langreth R, Tracer Z. The blues singer who created America’s hated drug pricing model. Bloomberg. 2016.
  83. 83.
    Jogalekar A. Don’t mind the gap – manufacturing costs and drug prices. Sci Am. 2014b.
  84. 84.
    Mullin R. Cost to develop new pharmaceutical drug now exceeds $2.5B. Scientific American stories by chemical & engineering news on 24 Nov 2014. 2014.
  85. 85.
    Lalonde RL, Willke RJ. Comparative efficacy and effectiveness: an opportunity for clinical pharmacology. Clin Pharmacol Ther. 2011;90(6):761.PubMedCrossRefGoogle Scholar
  86. 86.
    Humer C. Drug makers take big price increase on popular meds in US. Sci Am. 2016. Accessed 6 Apr 2016.
  87. 87.
    Smith A. Price gouging and the dangerous new breed of pharma companies. HBR. 2016.
  88. 88.
    Comanor WS, Scherer FM. Mergers and innovation in the pharmaceutical industry. J Health Econ. 2013;32(1):106.PubMedCrossRefGoogle Scholar
  89. 89.
    Abou-Gharbia M, Childers WE. Discovery of innovative therapeutics: today’s realities and tomorrow's vision. 2. Pharma’s challenges and their commitment to innovation. J Med Chem. 2014;57(13):5525.PubMedCrossRefGoogle Scholar
  90. 90.
    Lendrem D, Senn SJ, Lendrem BC, Isaacs JD. R&D productivity rides again? Pharm Stat. 2015b;14(1):1.PubMedCrossRefGoogle Scholar
  91. 91.
    Woodcock J, Brumfield M, Gill D, et al. The driving role of consortia on the critical path to innovative therapies. Nat Rev Drug Discov. 2014;13:781.
  92. 92.
    Arrowsmith J. A decade of change. Nat Rev Drug Discov. 2012;11(1):17.PubMedCrossRefGoogle Scholar
  93. 93.
    Kinch MS, Haynesworth A, Kinch SL, Hoyer D. An overview of FDA-approved new molecular entities: 1827-2013. Drug Discov Today. 2014a;19(8):1033.PubMedCrossRefGoogle Scholar
  94. 94.
    LaMattina JL. The impact of mergers on pharmaceutical R&D. Nat Rev Drug Discov. 2011;10(8):559.PubMedCrossRefGoogle Scholar
  95. 95.
  96. 96.
    Lendrem DW, Lendrem BC. The development speed paradox: can increasing development speed reduce R&D productivity? Drug Discov Today. 2014;19(3):209.PubMedCrossRefGoogle Scholar
  97. 97.
    Everett JR. Academic drug discovery: current status and prospects. Expert Opin Drug Discovery. 2015;10(9):937.CrossRefGoogle Scholar
  98. 98.
    Fishburn CS. Translational research: the changing landscape of drug discovery. Drug Discov Today. 2013;18(42257):487.PubMedCrossRefGoogle Scholar
  99. 99.
    Andrews DM, Swarbrick ME, Merritt AT. Collaborative practices for medicinal chemistry research across the big pharma and not-for-profit interface. Drug Discov Today. 2014;19(4):496.PubMedCrossRefGoogle Scholar
  100. 100.
    Rafols I, Hopkins MM, Hoekman J, Siepel J, O'Hare A, Perianes-Rodriguez A, Nightingale P. Big Pharma, little science? A bibliometric perspective on Big Pharma's R&D decline. Technol Forecast Soc Change. 2014;81(1):22.CrossRefGoogle Scholar
  101. 101.
    Schuhmacher A, Germann P-G, Trill H, Gassmann O. Models for open innovation in the pharmaceutical industry. Drug Discov Today. 2013;18(23–24):1133.PubMedCrossRefGoogle Scholar
  102. 102.
    Said M, Zerhouni E. The role of public–private partnerships in addressing the biomedical innovation challenge. Nat Rev Drug Discov. 2014;13:789–90.
  103. 103.
    Goldman M. The innovative medicines initiative: a European response to the innovation challenge. Clin Pharmacol Ther. 2012;91(3):418.PubMedCrossRefGoogle Scholar
  104. 104.
    Hagedoorn J, Wang N. Is there complementarity or substitutability between internal and external R&D strategies? Res Policy. 2012;41(6):1072.CrossRefGoogle Scholar
  105. 105.
    Robertson GM, Mayr LM. Collaboration versus outsourcing: the need to think outside the box. Future Med Chem. 2011;3(16):1995.PubMedCrossRefGoogle Scholar
  106. 106.
    Wang L, Plump A, Ringel M. Racing to define pharmaceutical R&D external innovation models. Drug Discov Today. 2015;20(3):361.PubMedCrossRefGoogle Scholar
  107. 107.
    Brumfield M. The Critical Path Institute: transforming competitors into collaborators. Nature Reviews Drug Discovery. 2014;13:785–6.
  108. 108.
    Juliano RL. Pharmaceutical innovation and public policy: the case for a new strategy for drug discovery and development. Sci Public Policy. 2013;40(3):393.CrossRefGoogle Scholar
  109. 109.
    Bickle M. Systems drug discovery: a quantitative, objective approach for safer drug development. Expert Opin Drug Discovery. 2012;7(9):757.CrossRefGoogle Scholar
  110. 110.
    Dahlin JL, Inglese J, Walters MA. Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov. 2015;14(4):279.PubMedCrossRefGoogle Scholar
  111. 111.
    Khusru A, Busch A, Gottwald M, et al. Industry–academia collaborations for biomarkers. Nat Rev Drug Discov. 2015;14:805.CrossRefGoogle Scholar
  112. 112.
    Palmer AM, Sundstrom L. Translational medicines research. Drug Discov Today. 2013;18(42320):503.PubMedCrossRefGoogle Scholar
  113. 113.
    Elebring T, Gill A, Plowright AT. What is the most important approach in current drug discovery: doing the right things or doing things right? Drug Discov Today. 2012;17(21-22):1166.PubMedCrossRefGoogle Scholar
  114. 114.
    Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419.PubMedCrossRefGoogle Scholar
  115. 115.
    Silverman E. For pharma, the Hollywood model of buying pipeline hits is not a panacea. Wall Street J. 2015.
  116. 116.
    Gordi T. Drug discovery and development: lessons from an undeveloped drug. Expert Rev Clin Pharmacol. 2012;5(2):157.PubMedCrossRefGoogle Scholar
  117. 117.
    Ekins S, Waller CL, Bradley MP, Clark AM, Williams AJ. Four disruptive strategies for removing drug discovery bottlenecks. Drug Discov Today. 2013;18(42130):265.PubMedCrossRefGoogle Scholar
  118. 118.
    Galizzi JP, Lockhart BP, Bril A. Applying systems biology in drug discovery and development. Drug Metabol Drug Interact. 2013;28(2):67.PubMedCrossRefGoogle Scholar
  119. 119.
    Gautier L, Taboureau O, Audouze K. The effect of network biology on drug toxicology. Expert Opin Drug Metab Toxicol. 2013;9(11):1409.PubMedCrossRefGoogle Scholar
  120. 120.
    Moggs J, Moulin P, Pognan F, Brees D, Leonard M, Busch S, Cordier A, Heard DJ, Kammuller M, Merz M, Bouchard P, Chibout S-D. Investigative safety science as a competitive advantage for pharma. Expert Opin Drug Metab Toxicol. 2012;8(9):1071.PubMedCrossRefGoogle Scholar
  121. 121.
    Comstock J. 21 clinical trials that are using Fitbit activity trackers right now. 2016. Accessed 16 Mar 2016.
  122. 122.
    Bahcall O. Precision medicine. Nature. 2015;526:7573.CrossRefGoogle Scholar
  123. 123.
    Reid GGJ, Bin Yameen TA, Parker JL. Impact of biomarkers on clinical trial risk. Pharmacogenomics. 2013;14(13):1645.PubMedCrossRefGoogle Scholar
  124. 124.
    Visser SAG, Aurell M, Jones RDO, et al. Model-based drug discovery: implementation and impact. Drug Discov Today. 2013;18(15-16):764.PubMedCrossRefGoogle Scholar
  125. 125.
    Bueters T, Ploeger BA, Visser SAG. The virtue of translational PKPD modeling in drug discovery: selecting the right clinical candidate while sparing animal lives. Drug Discov Today. 2013;18(17–18):853.PubMedCrossRefGoogle Scholar
  126. 126.
    Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61–7.
  127. 127.
    Milne CP, Cohen JP, Chakravarthy R. Market watch: where is personalized medicine in industry heading? Nat Rev Drug Discov. 2015;14:812.PubMedCrossRefGoogle Scholar
  128. 128.
    Willke RJ, Crown W, Del Aguila M, Cziraky MJ, Khan ZM, Migliori R. Melding regulatory, pharmaceutical industry, and U.S. payer perspectives on improving approaches to heterogeneity of treatment effect in research and practice. Value Health. 2013;16(6):10.CrossRefGoogle Scholar
  129. 129.
    Interlandi J. The paradox of precision medicine. Sci Am. 2016;314:24.
  130. 130.
    Shabaruddin FH, Fleeman ND, Payne K. Economic evaluations of personalized medicine: existing challenges and current developments. Pharmacogenomics Pers Med. 2015;8:115.CrossRefGoogle Scholar
  131. 131.
    Campbell SJ, Gaulton A, Marshall J, Bichko D, Martin S, Brouwer C, Harland L. Visualizing the drug target landscape. Drug Discovery Today. 2012;17(Suppl 1):3.CrossRefGoogle Scholar
  132. 132.
    Kimko H, Pinheiro J. Model-based clinical drug development in the past, present and future: a commentary. Br J Clin Pharmacol. 2015;79(1):108.PubMedCrossRefGoogle Scholar
  133. 133.
    Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, Mow T. Exploratory toxicology as an integrated part of drug discovery. Part I: why and how. Drug Discov Today. 2014;19(8):1131.PubMedCrossRefGoogle Scholar
  134. 134.
    Roberts RA, Kavanagh SL, Mellor HR, Pollard CE, Robinson S, Platz SJ. Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov Today. 2014;19(3):341.PubMedCrossRefGoogle Scholar
  135. 135.
    Satyanarayanajois SD, Hill RA. Medicinal chemistry for 2020. Future Med Chem. 2011;3(14):1765.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Cumming JG, Finlay MRV, Giordanetto F, Hemmerling M, Lister T, Sanganee H, Waring MJ. Potential strategies for increasing drug-discovery productivity. Future Med Chem. 2014;6(5):515.PubMedCrossRefGoogle Scholar
  137. 137.
    Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507.PubMedCrossRefGoogle Scholar
  138. 138.
    Stumpfe D, Ripphausen P, Bajorath J. Virtual compound screening in drug discovery. Future Med Chem. 2012;4(5):593.PubMedCrossRefGoogle Scholar
  139. 139.
    Tanrikulu Y, Kruger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today. 2013;18(42193):358.PubMedCrossRefGoogle Scholar
  140. 140.
    Barker A, Kettle JG, Nowak T, Pease JE. Expanding medicinal chemistry space. Drug Discov Today. 2013;18(42130):298.PubMedCrossRefGoogle Scholar
  141. 141.
    Hann MM, Keser GM. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discover. 2012;11(5):355.CrossRefGoogle Scholar
  142. 142.
    Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–72.
  143. 143.
    Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015;14(4):248.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Stinson L. A chip that mimics human organs is the design of the year. 2015.
  145. 145.
    Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2015.
  146. 146.
    Zhang S. Chips that mimic organs could be more powerful than animal testing. 2016.
  147. 147.
    Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874.PubMedCrossRefGoogle Scholar
  148. 148.
    Geldenhuys WJ, Van Der Schyf CJ. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin Drug Discovery. 2013;8(2):115.CrossRefGoogle Scholar
  149. 149.
    Jalencas X, Mestres J. On the origins of drug polypharmacology. Med Chem Comm. 2013;4(1):80.CrossRefGoogle Scholar
  150. 150.
    Morgan N. Decisions don’t start with data. 2014.
  151. 151.
    Moors EHM, Cohen AF, Schellekens H. Towards a sustainable system of drug development. Drug Discov Today. 2014;19(11):1711.PubMedCrossRefGoogle Scholar
  152. 152.
    Rosenblatt M. An incentive-based approach for improving data reproducibility. Sci Transl Med. 2016;8(336):336ed5.
  153. 153.
    LaMattina JL. 'Pay for performance' drug plans could impact biopharma’s R&D priorities. 2016. Forbescom.
  154. 154.
    Ringel R, Martin L, Hawkins C, Panier V, Denslow M, Buck L, Schulze U. What drives operational performance in clinical R&D? Nat Rev Drug Discov. 2016;15:155.PubMedCrossRefGoogle Scholar
  155. 155.
    Schleckser J. Execution eats strategy for lunch. 2015.
  156. 156.
    Koenig J. Does process excellence handcuff drug development? Drug Discov Today. 2011;16(42257):377.PubMedCrossRefGoogle Scholar
  157. 157.
    Katzenbach J. There’s no such thing as a culture turnaround. Harvard Bus Rev. 2013.
  158. 158.
  159. 159.
    Lucas S. How to create an awesome company culture. 2014.
  160. 160.
    Twaronite K. A global survey on the ambiguous state of employee trust. Harvard Bus Rev. 2016.
  161. 161.
    Chamorro-Premuzic T. It’s the company’s job to help employees learn. Harvard Bus Rev. Accessed 18 Jul 2016. 2016.
  162. 162.
    Janero DR. Developing doctoral scientists for drug discovery: Pluridimensional education required. Expert Opin Drug Discovery. 2013;8(2):105.CrossRefGoogle Scholar
  163. 163.
    Kaiser D. In retrospect: the structure of scientific revolutions. Nature. 2012;484:164–6.
  164. 164.
    Tollman P, Panier V, Dosik D, Biondi P, Cuss F. Organizational effectiveness: a key to R&D productivity. Nat Rev Drug Discov. 2016;15:441.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co.WallingfordUSA
  2. 2.Pharmaceutical Candidate Optimization - Discovery Pharmaceutics, Bristol-Myers Squibb Co.LawrencevilleUSA

Personalised recommendations