Advertisement

The Heidelberg Inventory of Geographic System Competency Model

  • Kathrin ViehrigEmail author
  • Alexander Siegmund
  • Joachim Funke
  • Sascha Wüstenberg
  • Samuel Greiff
Chapter
Part of the Methodology of Educational Measurement and Assessment book series (MEMA)

Abstract

The concept “system” is fundamental to many disciplines. It has an especially prominent place in geography education, in which additionally, the spatial perspective is central. Empirically validated competency models dealing specifically with geographic systems—as well as adequate measurement instruments—are still lacking. Therefore, based on the theoretically-guided development of a Geographic System Competency (GSC) model, the aim was to build and evaluate such a measurement instrument, with the help of probabilistic measurement models. The competency model had three dimensions: (1) “comprehend and analyze systems”, (2) “act towards systems” and (3) “spatial thinking”, whereby dimension (2) was changed to “evaluating possibilities to act towards systems” after a thinking-aloud study. A Cognitive Lab (CogLab) and two quantitative studies (Q1 n = 110, Q2 n = 324) showed divergent results. Dimension (2) could not be identified in both quantitative studies. Whereas Dimensions (1) and (3) constituted separate dimensions in Q1, in Q2 the two-dimensional model did not fit significantly better than the one-dimensional model. Besides showing the close relationship between spatial and systemic thinking in geographic contexts, which are thus both needed in modeling GSC, the project highlights the need for more research in this central area of geography education.

Keywords

Systems thinking Spatial thinking Competence model University students Geography 

Notes

Acknowledgements

This chapter is largely based on the final project report. The HEIGIS-project was funded by grants SI 877/6-1 and FU 173/13-1 from the German Research Foundation (DFG) in the Priority Program “Competence Models for Assessing Individual Learning Outcomes and Evaluating Educational Processes” (SPP 1293). Thanks also to the student research assistants, who played an important role, especially with regard to the data collection in the CogLabs. Thanks also to all experts who provided valuable advice during item generation for all studies. Of course, thanks also to all participants.

References

  1. Battersby, S. E., Golledge, R. G., & Marsh, M. J. (2006). Incidental learning of geospatial concepts across grade levels: Map overlay. Journal of Geography, 105, 139–146. doi: 10.1080/00221340608978679.CrossRefGoogle Scholar
  2. Bell, T. (2004). Komplexe Systeme und Strukturprinzipien der Selbstregulation: Konstruktion grafischer Darstellungen, Transfer und systemisches Denken [Complex systems and structural principles of self-regulation: construction of graphical displays, transfer, and systemic thinking]. Zeitschrift für Didaktik der Naturwissenschaften, 10, 183–204.Google Scholar
  3. Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42, 518–560. doi: 10.1002/tea.20061.CrossRefGoogle Scholar
  4. CoE (Council of Europe). (2001). Common European framework of reference for languages. http://www.coe.int. Accessed 22 Oct 2007.
  5. DGfG (German Geographical Society). (2007). Educational standards in geography for the intermediate school certificate. Berlin: Author.Google Scholar
  6. DGfG (German Geographical Society). (Ed.). (2010). Bildungsstandards im Fach Geographie für den Mittleren Schulabschluss—mit Aufgabenbeispielen [Educational standards in geography for the intermediate school certificate—with sample tasks]. Bonn: Selbstverlag Deutsche Gesellschaft für Geographie.Google Scholar
  7. Funke, J. (1990). Systemmerkmale als Determinanten des Umgangs mit dynamischen Systemen [System features as determinants of behavior in dynamic task environments]. Sprache & Kognition, 9, 143–154.Google Scholar
  8. Funke, J., & Greiff, S. (2017). Dynamic problem solving: Multiple-item testing based on minimal complex systems. In D. Leutner, J. Fleischer, J. Grünkorn, & E. Klieme (Eds.), Competence assessment in education: Research, models and instruments (pp. 427–443). Berlin: Springer.Google Scholar
  9. Gersmehl, P. J., & Gersmehl, C. A. (2006). Wanted: A concise list of neurologically defensible and assessable spatial thinking skills. Research in Geographic Education, 8, 5–38.Google Scholar
  10. Gersmehl, P. J., & Gersmehl, C. A. (2007). Spatial thinking by young children: Neurologic evidence for early development and “educability”. Journal of Geography, 106, 181–191. doi: 10.1080/00221340701809108.CrossRefGoogle Scholar
  11. Greiff, S. (2010). Individualdiagnostik der komplexen Problemlösefähigkeit [Individual diagnostics of complex problem solving skills]. Münster: Waxmann.Google Scholar
  12. Greiff, S., & Funke, J. (2009). Measuring complex problem solving: The MicroDYN approach. In F. Scheuermann & J. Björnsson (Eds.), The transition to computer-based assessment. New approaches to skills assessment and implications for large-scale testing (pp. 157–163). Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  13. Greiff, S., Holt, D. V., & Funke, J. (2013). Perspectives on problem solving in educational assessment: Analytical, interactive, and collaborative problem solving. Journal of Problem Solving, 5(2), 71–91. doi: 10.7771/1932-6246.1153.CrossRefGoogle Scholar
  14. Hammann, M., Phan, T. T. H., Ehmer, M., & Grimm, T. (2008). Assessing pupils’ skills in experimentation. Journal of Biological Education, 42, 66–72. doi: 10.1080/00219266.2008.9656113.CrossRefGoogle Scholar
  15. Kerski, J. J. (2013). Understanding our changing world through web-mapping based investigations. J-Reading—Journal of Research and Didactics in Geography, 2(2), 11–26. doi: 10.4458/2379-02.Google Scholar
  16. Klaus, D. (1985). Allgemeine Grundlagen des systemtheoretischen Ansatzes [General foundations of the systems theory approach]. Geographie und Schule, 33, 1–8.Google Scholar
  17. Klieme, E., Hartig, J., & Wirth, J. (2005). Analytisches Problemlösen: Messansatz und Befunde zu Planungs- und Entscheidungsaufgaben [Analytical problem solving: measurement approach and results of planning and decision tasks]. In E. Klieme, D. Leutner, & J. Wirth (Eds.), Problemlösekompetenz von Schülerinnen und Schülern (pp. 37–54). Wiesbaden: VS.CrossRefGoogle Scholar
  18. Köck, H. (1993). Raumbezogene Schlüsselqualifikationen: Der fachimmanente Beitrag des Geographieunterrichts zum Lebensalltag des Einzelnen und Funktionieren der Gesellschaft [Space-related key qualifications: the subject-innate contribution of geographic education to the everyday life of individuals and functioning of society]. Geographie und Schule, 84, 14–22.Google Scholar
  19. Lee, J. W. (2005). Effect of GIS learning on spatial ability. Doctoral dissertation, Texas A & M University, Texas. Retrieved from https://repository.tamu.edu/handle/1969.1/3896
  20. Muthén, L. K., & Muthén, B. O. (2007). MPlus user’s guide. Los Angeles: Author.Google Scholar
  21. Orion, N., & Basis, T. (2008, March). Characterization of high school students’ system thinking skills in the context of earth systems. Paper presented at the NARST annual conference, Baltimore.Google Scholar
  22. Ossimitz, G. (1996). Das Projekt “Entwicklung vernetzten Denkens”: Erweiterter Endbericht [The project “Development of networked thinking”: Extended final report]. Klagenfurt: Universität Klagenfurt.Google Scholar
  23. Ossimitz, G. (2000). Entwicklung systemischen Denkens [Development of systemic thinking]. Wien: Profil.Google Scholar
  24. Pollmeier, J., Hardy, I., Koerber, S., & Möller, K. (2011). Lassen sich naturwissenschaftliche Lernstände im Grundschulalter mit schriftlichen Aufgaben valide erfassen [Can scientific achievements in primary school age be validly measured with written tasks]? Zeitschrift für Pädagogik, 57, 834–853.Google Scholar
  25. Rempfler, A., & Uphues, R. (2010). Sozialökologisches Systemverständnis: Grundlage für die Modellierung von geographischer Systemkompetenz [Socio-ecological system understanding: foundation for the modeling of geographic system competence]. Geographie und Ihre Didaktik, 38, 205–217.Google Scholar
  26. Rempfler, A., & Uphues, R. (2011). Systemkompetenz im Geographieunterricht: Die Entwicklung eines Kompetenzmodells [System competence in geographic education: The development of a competence model]. In C. Meyer, R. Henrÿ, & G. Stöber (Eds.), Geographische Bildung. Kompetenzen in didaktischer Forschung und Schulpraxis (pp. 36–48). Braunschweig: Westermann.Google Scholar
  27. Rempfler, A., & Uphues, R. (2012). System competence in geography education. Development of competence models, diagnosing pupils’ achievement. European Journal of Geography, 3(1), 6–22.Google Scholar
  28. Rieß, W., & Mischo, C. (2008). Entwicklung und erste Validierung eines Fragebogens zur Erfassung des systemischen Denkens in nachhaltigkeitsrelevanten Kontexten [Development and first validation of a questionnaire to measure systemic thinking in sustainability-related contexts]. In I. Bormann & G. De Haan (Eds.), Kompetenzen der Bildung für nachhaltige Entwicklung. Operationalisierung, Messung, Rahmenbedingungen, Befunde (pp. 215–232). Wiesbaden: VS.CrossRefGoogle Scholar
  29. Smithson, P., Addison, K., & Atkinson, K. (2002). Fundamentals of the physical environment. London: Routledge.Google Scholar
  30. Sommer, C. (2005). Untersuchung der Systemkompetenz von Grundschülern im Bereich Biologie [Examination of system competence of primary school students in the area of biology]. Doctoral dissertation. Retrieved from http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_1652
  31. Sweeney, L. B., & Sterman, J. D. (2000). Bathtub dynamics: initial results of a systems thinking inventory. System Dynamics Review, 16, 249–286. doi: 10.1002/sdr.198.CrossRefGoogle Scholar
  32. Viehrig, K. (2015). Exploring the effects of GIS use on students’ achievement in geography. Doctoral dissertation. Retrieved from http://opus.ph-heidelberg.de/frontdoor/index/index/docId/71
  33. Viehrig, K., Greiff, S., Siegmund, A., & Funke, J. (2011). Geographische Kompetenzen fördern: Erfassung der Geographischen Systemkompetenz als Grundlage zur Bewertung der Kompetenzentwicklung [Fostering geographic competencies: Measurement of geographic system competence as foundation of evaluating the competence development]. In C. Meyer, R. Henrÿ, & G. Stöber (Eds.), Geographische Bildung: Kompetenzen in didaktischer Forschung und Schulpraxis (pp. 49–57). Braunschweig: Westermann.Google Scholar
  34. Viehrig, K., Siegmund, A., Wüstenberg, S., Greiff, S., & Funke, J. (2012). Systemisches und räumliches Denken in der geographischen Bildung: Erste Ergebnisse zur Überprüfung eines Modells der Geographischen Systemkompetenz [Systemic and spatial thinking in geographic education: First results of testing a model of geographic system competence]. In A. Hüttermann, P. Kirchner, S. Schuler, & K. Drieling (Eds.), Räumliche Orientierung: Räumliche Orientierung, Karten und Geoinformation im Unterricht (pp. 95–102). Braunschweig: Westermann.Google Scholar
  35. Wu, M. L., Adams, R. J., & Wilson, M. R. (2007). ACER ConQuest version 2.0. Generalised item response modelling software. Camberwell: ACER Press.Google Scholar
  36. Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving—More than reasoning? Intelligence, 40, 1–14. doi: 10.1016/j.intell.2011.11.003.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kathrin Viehrig
    • 1
    Email author
  • Alexander Siegmund
    • 2
  • Joachim Funke
    • 3
  • Sascha Wüstenberg
    • 4
  • Samuel Greiff
    • 4
  1. 1.School of EducationUniversity of Applied Sciences and Arts Northwestern SwitzerlandWindischSwitzerland
  2. 2.Heidelberg University of EducationHeidelbergGermany
  3. 3.Heidelberg UniversityHeidelbergGermany
  4. 4.University of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations