Recent Advances in Opinion Modeling: Control and Social Influence

  • Giacomo Albi
  • Lorenzo Pareschi
  • Giuseppe ToscaniEmail author
  • Mattia Zanella
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents’ role in the opinion exchange process.


Optimal Control Problem Model Predictive Control Opinion Formation Binary Interaction Average Opinion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been written within the activities of the National Groups of Scientific Computing (GNCS) and Mathematical Physics (GNFM) of the National Institute of High Mathematics of Italy (INDAM). GA acknowledges the ERC-Starting Grant project High-Dimensional Sparse Optimal Control (HDSPCONTR). GT acknowledges the partial support of the MIUR project Optimal mass transportation, geometrical and functional inequalities with applications.


  1. 1.
    D. Acemoglu, O. Asuman. Opinion dynamics and learning in social networks. Dynamic Games and Applications, 1, 3–49, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    R. Albert, A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1): 1–47, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    G. Albi, M. Bongini, E. Cristiani, D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM Journal on Applied Mathematics, to appear.Google Scholar
  4. 4.
    G. Albi, L. Pareschi. Modeling of self-organized systems interacting with a few individuals: from microscopic to macroscopic dynamics. Applied Mathematics Letters, 26: 397–401, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    G. Albi, L. Pareschi. Binary interaction algorithm for the simulation of flocking and swarming dynamics. SIAM Journal on Multiscale Modeling and Simulations, 11(1), 1–29, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    G. Albi, M. Herty, L. Pareschi. Kinetic description of optimal control problems and applications to opinion consensus. Communications in Mathematical Sciences, 13(6): 1407–1429, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G. Albi, L. Pareschi, M. Zanella. Boltzmann-type control of opinion consensus through leaders. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20140138, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    G. Albi, L. Pareschi, M. Zanella. Uncertainty quantification in control problems for flocking models. Mathematical Problems in Engineering, 2015, 14 pp., 2015.Google Scholar
  9. 9.
    G. Albi, L. Pareschi, M. Zanella. On the optimal control of opinion dynamics on evolving networks. IFIP TC7 2015 Proceedings, to appear Kinetic and Related Models, 10(1): 1–32, 2017.Google Scholar
  10. 10.
    G. Albi, L. Pareschi, M. Zanella. Opinion dynamics over complex networks: kinetic modeling and numerical methods. To appear in Kinetic and related models, 2016.Google Scholar
  11. 11.
    G. Aletti, G Naldi, G. Toscani. First-order continuous models of opinion formation. SIAM Journal on Applied Mathematics, 67(3): 837–853, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    L. A. N. Amaral, A. Scala, M. Bathélemy, H.E. Stanley. Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21): 11149–11152, 2000.CrossRefGoogle Scholar
  13. 13.
    D. Armbruster, C. Ringhofer. Thermalized kinetic and fluid models for re-entrant supply chains. Multiscale Modeling & Simulation, 3(4): 782–800, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A.-L. Barabási, R. Albert. Emergence of scaling in random networks. Science, 286(5439): 509–512, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A.-L. Barabási, R. Albert, H. Jeong. Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1): 173–187, 1999.CrossRefGoogle Scholar
  16. 16.
    N. Bellomo, G. Ajmone Marsan, A. Tosin. Complex Systems and Society. Modeling and Simulation. SpringerBriefs in Mathematics, Springer, 2013.Google Scholar
  17. 17.
    N. Bellomo, J. Soler. On the mathematical theory of the dynamics of swarms viewed as complex systems. Mathematical Models and Methods in Applied Sciences, 22(01): 1140006, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhysics Letters, 69(5): 671, 2005.CrossRefGoogle Scholar
  19. 19.
    E. Ben-Naim, P. L. Krapivski, S. Redner. Bifurcations and patterns in compromise processes. Physica D: Nonlinear Phenomena, 183(3): 190–204, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    E. Ben-Naim, P. L. Krapivski, R. Vazquez, S. Redner. Unity and discord in opinion dynamics. Physica A, 330(1–2): 99-106, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. Bensoussan, J. Frehse, P. Yam. Mean field games and mean field type control theory. SpringerBriefs in Mathematics, New York, NY: Springer, 2013.zbMATHCrossRefGoogle Scholar
  22. 22.
    M. L. Bertotti, M. Delitala. On a discrete generalized kinetic approach for modeling persuader’s influence in opinion formation processes. Mathematical and Computer Modeling, 48(7–8): 1107–1121, 2008.zbMATHCrossRefGoogle Scholar
  23. 23.
    S. Biswas. Mean-field solutions of kinetic-exchange opinion models. Physical Review E, 84(5), 056105, 2011.CrossRefGoogle Scholar
  24. 24.
    M. Bongini, M. Fornasier, F. Rossi, F. Solombrino. Mean-Field Pontryagin Maximum Principle, preprint, 2015.Google Scholar
  25. 25.
    C. M. Bordogna, E. V. Albano. Dynamic behavior of a social model for opinion formation. Physical Review E, 76(6): 061125, 2007.CrossRefGoogle Scholar
  26. 26.
    A. Borzì, S. Wongkaew. Modeling and control through leadership of a refined flocking system. Mathematical Models and Methods in Applied Sciences, 25(2): 255–282, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    L. Boudin, F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic and Related Models: 433–449, 2009.Google Scholar
  28. 28.
    L. Boudin, F. Salvarani. A kinetic approach to the study of opinion formation. ESAIM: Mathematical Modeling and Numerical Analysis, 43(3): 507–522, 2009.MathSciNetzbMATHGoogle Scholar
  29. 29.
    L. Boudin, F. Salvarani. Conciliatory and contradictory dynamics in opinion formation. Physica A: Statistical Mechanics and its Applications, 391(22): 5672–5684, 2012.CrossRefGoogle Scholar
  30. 30.
    L. Boudin, R. Monaco, F. Salvarani. Kinetic model for multidimensional opinion formation. Physical Review E, 81(3): 036109, 2010.MathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Brugna, G. Toscani. Kinetic models of opinion formation in the presence of personal conviction. Physical Review E, 92, 052818, 2015.CrossRefGoogle Scholar
  32. 32.
    C. Buet, S. Dellacherie. On the Chang and Cooper numerical scheme applied to a linear Fokker-Planck equation. Communications in Mathematical Sciences, 8(4): 1079–1090, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    C. Buet, S. Cordier, V. Dos Santos. A conservative and entropy scheme for a simplified model of granular media. Transport Theory and Statistical Physics, 33(2): 125–155, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram. Mean-field games with nonlinear mobilities in pedestrian dynamics. Discrete and Continuous Dynamical Systems - B, 19(5): 1311–1333, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    E. F. Camacho, C. Bordons. Model Predictive Control, Springer–Verlag London, 2004.zbMATHGoogle Scholar
  36. 36.
    M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 3(4): 447–466, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    C. Castellano, S. Fortunato, V. Loreto. Statistical physics of social dynamics. Review of Modern Physics, 81(2): 591–646, 2009.CrossRefGoogle Scholar
  38. 38.
    A. Chakraborti, B. K.  Chakrabarti. Statistical mechanics of money: how saving propensity affects its distribution. European Physical Journal B, 17: 167-170, 2000.CrossRefGoogle Scholar
  39. 39.
    J. S. Chang, G. Cooper. A practical difference scheme for Fokker-Planck equation. Journal of Computational Physics, 6: 1–16, 1970.zbMATHCrossRefGoogle Scholar
  40. 40.
    H. Choi, M. Hinze, K. Kunisch. Instantaneous control of backward-facing step flows. Applied Numerical Mathematics, 31(2): 133–158, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    R. M. Colombo, N. Pogodaev. Confinement strategies in a model for the interaction between individuals and a continuum. SIAM Journal on Applied Dynamical Systems, 11(2): 741–770, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    R. M. Colombo, N. Pogodaev. On the control of moving sets: positive and negative confinement results. SIAM Journal on Control and Optimization, 51(1): 380–401, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    V. Comincioli, L. Della Croce, G. Toscani. A Boltzmann-like equation for choice formation. Kinetic and Related Models, 2(1): 135–149, 2009.Google Scholar
  44. 44.
    S. Cordier, L. Pareschi, G. Toscani. On a kinetic model for a simple market economy. Journal of Statistical Physics, 120(1–2): 253–277, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    I. D. Couzin, J. Krause, N. R. Franks, S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433(7025): 513–516, 2005.CrossRefGoogle Scholar
  46. 46.
    E. Cristiani, B. Piccoli, A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling & Simulation, 9(1): 155–182, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    N. Crokidakis. Role of noise and agents’ convictions on opinion spreading in a three-state voter-like model. Journal of Statistical Mechanics: Theory and Experiment, 07: P07008, 2013.CrossRefGoogle Scholar
  48. 48.
    N. Crokidakis, C. Anteneodo. Role of conviction in nonequilibrium models of opinion formation. Physical Review E: 86(6): 061127, 2012.CrossRefGoogle Scholar
  49. 49.
    F. Cucker, S. Smale. Emergent behavior in flocks. IEEE Transaction on Automatic Control, 52(5): 852–862, 2007.MathSciNetCrossRefGoogle Scholar
  50. 50.
    A. Das, S. Gollapudi, K. Munagala. Modeling opinion dynamics in social networks, Proceedings of the 7th ACM international conference on Web search and data mining, ACM New York, 403–412, 2014.Google Scholar
  51. 51.
    G. Deffuant, F. Amblard, G. Weisbuch, T. Faure. How can extremism prevail? A study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4), 2002.Google Scholar
  52. 52.
    P. Degond, M. Herty, J-G Liu, Meanfield games and model predictive control. arXiv preprint, 2014. arXiv:1412.7517
  53. 53.
    P. Degond, S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18: 1193–1215, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    P. Degond, J.-G. Liu, S. Motsch, V. Panferov. Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods and Applications of Analysis, 20(2): 89–114, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    P. Degond, J.-G. Liu, C. Ringhofer. Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of Nonlinear Science, 24(1): 93–115, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    M. Dolfin, L. Miroslav. Modeling opinion dynamics: how the network enhances consensus. Networks & Heterogeneous Media, 10(4): 877-896, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    M. D‘Orsogna, Y. L. Chuang, A. Bertozzi, L. Chayes. Self-propelled particles with soft-core interactions. Patterns, stability and collapse. Physical Review Letters, 96: 104302, 2006.Google Scholar
  58. 58.
    B. Düring, M.-T. Wolfram. Opinion dynamics: inhomogeneous Boltzmann-type equations modeling opinion leadership and political segregation. Proceedings of the Royal Society of London A, 471(2182):20150345, 2015.CrossRefGoogle Scholar
  59. 59.
    B. Düring, P. A. Markowich, J.-F. Pietschmann, M.-T. Wolfram. Boltzmann and Fokker-Planck equations modeling opinion formation in the presence of strong leaders. Proceedings of the Royal Society of London A, 465(2112): 3687–3708, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    M. Fornasier, F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20(4): 1123–1152, 2014.Google Scholar
  61. 61.
    M. Fornasier, J. Haskovec, G. Toscani. Fluid dynamic description of flocking via Povzner–Boltzmann equation. Physica D: Nonlinear Phenomena, 240(1): 21–31, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    M. Fornasier, B. Piccoli, F. Rossi. Mean-field sparse optimal control, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130400, 21, 2014.Google Scholar
  63. 63.
    G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani. The grazing collision limit of the inelastic Kac model around a Lévy-type equilibrium. SIAM Journal of Mathematical Analysis, 44: 827–850, 2012.zbMATHCrossRefGoogle Scholar
  64. 64.
    S. Galam, J. D. Zucker. From individual choice to group decision-making. Physica A: Statistical Mechanics and its Applications, 287(3–4): 644–659, 2000.MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Galam, Y. Gefen,Y. Shapir. Sociophysics: a new approach of sociological collective behavior. Journal of Mathematical Sociology, 9: 1–13, 1982.zbMATHCrossRefGoogle Scholar
  66. 66.
    J. Gómez-Serrano, C. Graham, J.-Y. Le Boudec. The bounded confidence model of opinion dynamics. Mathematical Models and Methods in Applied Sicneces, 22(02): 1150007, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    S. Y. Ha, E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic and Related Models, 1: 415–435, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    D. Helbing, S. Lämmer, J.-P. Lebacque. Self-organized control of irregular or perturbed network traffic. Optimal Control and dynamic games, Springer US: 239–274, 2005.Google Scholar
  69. 69.
    M. Herty, C. Ringhofer. Feedback controls for continuous priority models in supply chain management. Computational Methods in Applied Mathematics, 11(2): 206–213, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    M. Herty, C. Ringhofer. Averaged kinetic models for flows on unstructured networks. Kinetic and Related Models, 4: 1081–1096, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    M. Herty, M. Zanella. Performance bounds for the mean–field limit of constrained dynamics. Discrete and Continuous Dynamical Systems A, 37(4): 2023–2043, 2017.Google Scholar
  72. 72.
    R. Hegselmann, U. Krause. Opinion dynamics and bounded confidence, models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2002.Google Scholar
  73. 73.
    M. Kristic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adaptive Control Design, John Wiley and Sons Inc., New York, 1995.Google Scholar
  74. 74.
    M. Lallouache, A. Chakrabarti, A. Chakraborti, B. K. Chakrabarti. Opinion formation in the kinetic exchange models: spontaneous symmetry breaking transition. Physical Review E, 82: 056112, 2010.CrossRefGoogle Scholar
  75. 75.
    P.F. Lazarsfeld, B.R. Berelson, H. Gaudet. The people’s choice: how the voter makes up his mind in a presidential campaign. New York, NY: Duell, Sloan & Pierce 1944.Google Scholar
  76. 76.
    E. W. Larsen, C. D. Levermore, G. C. Pomraning, J. G. Sanderson. Discretization methods for one-dimensional Fokker-Planck operators. Journal of Computational Physics, 61: 359–390, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    J.-M. Lasry, P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1): 229–260, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    T. Lux, M. Marchesi. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397(6719): 498–500, 1999.CrossRefGoogle Scholar
  79. 79.
    D. Maldarella, L. Pareschi. Kinetic models for socio-economic dynamicsof speculative markets. Physica A: Statistical Mechanics and its Applications, 391(3): 715–730, 2012.CrossRefGoogle Scholar
  80. 80.
    D.Q. Mayne, H. Michalska. Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 35(7): 814–824, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    D.Q. Mayne, J.B.  Rawlings, C.V. Rao, P.O.M. Scokaert. Constrained model predictive control: stability and optimality. Automatica, 36(6): 789–814, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    H. Michalska, D.Q. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 38(11): 1623–1633, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    M. Mohammadi, A. Borzì. Analysis of the Chang-Cooper discretization scheme for a class of Fokker-Planck equations. Journal of Numerical Mathematics, 23(3): 271–288, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    S. Motsch, E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review, 56(4): 577–621, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    C. Mudde. Populist radical right parties in Europe. Cambridge, UK: Cambridge University Press, 2007.CrossRefGoogle Scholar
  86. 86.
    G. Naldi, L. Pareschi, G. Toscani. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhauser, Boston, 2010.zbMATHCrossRefGoogle Scholar
  87. 87.
    M.E.J. Newman. The structure and function on complex networks. SIAM Review, 45(2): 167–256, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    L. Pareschi, G. Russo. An introduction to Monte Carlo methods for the Boltzmann equation. ESAIM: Proceedings, EDP Sciences. Vol. 10: 35–75, 2001.Google Scholar
  89. 89.
    L. Pareschi, G. Toscani. Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods. Oxford University Press, 2013.zbMATHGoogle Scholar
  90. 90.
    L. Pareschi, G. Toscani. Wealth distribution and collective knowledge: a Boltzmann approach. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028): 20130396, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    L. Pareschi, P. Vellucci, M. Zanella. Kinetic models of collective decision-making in the presence of equality bias. Physica A: Statistical Mechanics and its Application, 467: 201-217, 2017.MathSciNetCrossRefGoogle Scholar
  92. 92.
    S. Patterson, B. Bamieh. Interaction-driven opinion dynamics in online social networks, Proceedings of the First Workshop on Social Media Analytics, ACM New York, 98–110, 2010Google Scholar
  93. 93.
    H. Risken, The Fokker-Planck equation, vol. 18 of Springer Series in Synergetics, Springer-Verlag, Berlin, second ed., 1989. Methods of solution and applications.Google Scholar
  94. 94.
    P. Sen. Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges. Physical Review E, 83(1): 016108, 2011.CrossRefGoogle Scholar
  95. 95.
    E.D. Sontag. Mathematical control theory: deterministic finite dimensional systems, Springer Science, Vol. 6, Second Edition, 1998.Google Scholar
  96. 96.
    S.H. Strogatz. Exploring complex networks. Nature, 410(6825): 268–276, 2001.CrossRefGoogle Scholar
  97. 97.
    K. Sznajd–Weron, J. Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(6): 1157–1165, 2000.zbMATHCrossRefGoogle Scholar
  98. 98.
    G. Toscani. Kinetic models of opinion formation. Communications in Mathematical Sciences, 4(3): 481–496, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    F. Vazquez, P. L. Krapivsky, S. Redner. Constrained opinion dynamics: freezing and slow evolution. Journal of Physics A: Mathematical and General, 36(3): L61, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    T. Vicsek, A. Zafeiris. Collective motion. Physics Reports, 517(3): 71–140, 2012.CrossRefGoogle Scholar
  101. 101.
    C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Archive for Rational Mechanics and Analysis, 143(3): 273–307, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393: 440–442, 1998.CrossRefGoogle Scholar
  103. 103.
    W. Weidlich. Sociodynamics: a Systematic Approach to Mathematical Modeling in the Social Sciences, Harwood Academic Publishers, Amsterdam, 2000.zbMATHGoogle Scholar
  104. 104.
    G. Weisbuch, G. Deffuant, F. Amblard. Persuasion dynamics. Physica A: Statistical Mechanics and its Applications, 353: 555–575, 2005.CrossRefGoogle Scholar
  105. 105.
    Y.-B. Xie, T. Zhou, B.-H. Wang. Scale-free networks without growth. Physica A: Statistical Mechanics and its Applications, 387: 1683–1688, 2008.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giacomo Albi
    • 1
  • Lorenzo Pareschi
    • 2
  • Giuseppe Toscani
    • 3
    Email author
  • Mattia Zanella
    • 2
  1. 1.Technische Universität MünchenGarching (München)Germany
  2. 2.University of FerraraFerraraItaly
  3. 3.University of PaviaPaviaItaly

Personalised recommendations