Birkhoff Polynomial Basis

  • Amir Amiraslani
  • Heike Faßbender
  • Nikta Shayanfar
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 192)

Abstract

The Birkhoff interpolation problem is an extension of the well-known Lagrange and Hermite interpolation problems. We propose a new set of basis polynomials for representing the Birkhoff interpolation polynomial. The proposed basis extends the definition of the Newton basis for non-distinct interpolation nodes. This approach allows to determine the Birkhoff interpolation polynomial via a special linear system of equations. When applied to the special cases of Taylor, Lagrange and Hermite interpolations, this approach reduces to the well-known solutions of these problems expressed in the Newton basis. A number of examples are studied.

Keywords

Polynomial bases Polynomial interpolation Differentiation matrix Birkhoff matrix 

References

  1. 1.
    Amiraslani, A.: Differentiation matrices in polynomial bases, Math. Sci. 10(1), 47–53 (2016)Google Scholar
  2. 2.
    Amiraslani, A., Corless, R.M., Lancaster, P.: Linearization of matrix polynomials expressed in polynomial bases. IMA J. Numer. Anal. 29(1), 141–157 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Atkinson, K., Sharma, A.: A partial characterization of poised Hermite-Birkhoff interpolation problems. SIAM J. Numer. Anal. 6, 230–235 (1969)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birkhoff, G.D.: General mean value theorems with applications to mechanical differentiation and quadrature. Trans. Am. Math. Soc. 7(1), 107–136 (1906)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Butcher, J.C., Corless, R.M., Gonzalez-Vega, L., Shakoori, A.: Polynomial algebra for Birkhoff interpolants. Numer. Algorithms 56(3), 319–347 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chirikalov, V.A.: Computation of the differentiation matrix for the Hermite interpolating polynomials. J. Math. Sci. 68(6), 766–770 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Davis, P.: Interpolation and Approximation. Dover Publications, New York (1975)MATHGoogle Scholar
  8. 8.
    de Bruin, M.G., Sharma, A.: Birkhoff interpolation on perturbed roots of unity on the unit circle. J. Nat. Acad. Math. India 11, 83–97 (1997)MathSciNetMATHGoogle Scholar
  9. 9.
    de Bruin, M.G., Sharma, A.: Birkhoff interpolation on nonuniformly distributed roots of unity. J. Comput. Appl. Math. 133(1–2), 295–303 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    de Bruin, M.G., Dikshit, H.P.: Birkhoff interpolation on nonuniformly distributed points. J. Indian Math. Soc. (NS) 69(1–4), 81–101 (2002)MathSciNetMATHGoogle Scholar
  11. 11.
    de Bruin, M.G., Dikshit, H.P., Sharma, A.: Birkhoff interpolation on unity and on Möbius transform of the roots of unity. Numer. Algorithms 23(1), 115–125 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Dikshit, H.P.: Birkhoff interpolation on some perturbed roots of unity. Nonlinear Anal. Forum 6(1), 97–102 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Finden, W.F.: An error term and uniqueness for Hermite-Birkhoff interpolation involving only function values and/or first derivative values. J. Comput. Appl. Math. 212(1), 1–15 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ferguson, D.: The question of uniqueness for G. D. Birkhoff interpolation problems. J. Approx. Theory 2, 1–28 (1969)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gonzalez-Vega, L.: Applying quantifier elimination to the Birkhoff interpolation problem. J. Symb. Comput. 22(1), 83–103 (1996)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Higham, D.J.: Runge-Kutta defect control using Hermite-Birkhoff interpolation. SIAM J. Sci. Comput. 12, 991–999 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lorentz, G.G.: Birkhoff interpolation problem. Report CNA-103. The Center of Numerical Analysis, The University of Texas (1975)Google Scholar
  18. 18.
    Lorentz G.G., Jetter, K., Riemenschneider, S.D.: Birkhoff Interpolation. Encyclopedia of Mathematics and its Applications, vol. 19. Cambridge University Press, Cambridge (1984)Google Scholar
  19. 19.
    Mühlbach, G.: An algorithmic approach to Hermite-Birkhoff-interpolation. Numer. Math. 37(3), 339–347 (1981)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Polya, G.: Bemerkungen zur Interpolation und der Naherungstheorie der Balkenbiegung. Z. Angew. Math. Mech. 11, 445–449 (1931)CrossRefMATHGoogle Scholar
  21. 21.
    Pathak, A.K.: A Birkhoff interpolation problem on the unit circle in the complex plane. J. Indian Math. Soc. (N.S.) 73(3–4), 227–233 (2006)Google Scholar
  22. 22.
    Rababah, A., Al-Refai, M., Al-Jarrah, R.: Computing derivatives of Jacobi polynomials using Bernstein transformation and differentiation matrix. Numer. Funct. Anal. Optim. 29(5–6), 660–673 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Schoenberg, I.J.: On Hermite-Birkhoff interpolation. J. Math. Anal. Appl. 16, 538–543 (1966)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shi, Y.G.: Theory of Birkhoff Interpolation. Nova Science, New York (2003)MATHGoogle Scholar
  25. 25.
    Shen, J., Tang, T., Wang, L.: Spectral methods: algorithms, analysis and applications. SIAM Rev. 55(2), 405–406 (2013)MathSciNetGoogle Scholar
  26. 26.
    Turan, P.: Some open problems in approximation theory. Mat. Lapok 25, 21–75 (1974)MathSciNetMATHGoogle Scholar
  27. 27.
    Turan, P.: On some open problems of approximation theory. J. Approx. Theory 29(1), 23–85 (1980)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Tadmor, E.: Stability of finite-difference, pseudospectral and Fourier-Galerkin approximations for time-dependent problems. SIAM Rev. 29(4), 525–555 (1987)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhou, Y., Martin, C.F.: A regularized solution to the Birkhoff interpolation problem. Commun. Inf. Syst. 4(1), 89–102 (2004)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amir Amiraslani
    • 1
  • Heike Faßbender
    • 2
  • Nikta Shayanfar
    • 2
  1. 1.STEM DepartmentUniversity of Hawaii-Maui CollegeKahuluiUSA
  2. 2.Institut Computational MathematicsAG Numerik, Technische Universität BraunschweigBraunschweigGermany

Personalised recommendations