Membranes, Plates, and Microphones

  • Steven L. Garrett
Part of the Graduate Texts in Physics book series (GTP)


This is the final chapter in Part I of this textbook that addresses vibration. In this chapter, we will apply the techniques developed thus far to two-dimensional vibrating surfaces. In Part II, we begin our investigations into waves in fluids. This final vibrations chapter is then appropriately transitional, since most waves that are produced in fluids result from the vibrations of two-dimensional surfaces. All acoustical stringed musical instruments include some mechanism to transfer the vibration of the string to a two-dimensional surface, whether that is the sounding board of a piano, autoharp, or dulcimer; the body of a guitar, mandolin, or some member of the violin family; or the drumhead of a banjo or erhu. Strings are very inefficient in their ability to couple their vibrations to the surrounding fluid medium; two-dimensional surfaces are quite a good deal more efficient. Of course, drums of all kinds make sound due to the vibration of a membrane. Obviously, loudspeakers create sound in the air by the vibrations of a two-dimensional piston—there are no electrodynamic loudspeakers (see Sect.  2.5.5) that have only voice coils with no cone and/or dome attached.


Normal Mode Mode Shape Nodal Line Polarization Voltage Adiabatic Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Jahnke, F. Emde, Tables of Functions with Formulae and Curves, 4th edn. (Dover, New York, 1945)zbMATHGoogle Scholar
  2. 2.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (National Bureau Standards – Applied Mathematics Series #55, Washington, DC, 1964)zbMATHGoogle Scholar
  3. 3.
    M. Greenspan, Simple derivation of the Boltzmann-Ehrenfest Adiabatic Principle. J. Acoust. Soc. Am. 27(1), 34–35 (1955)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    E.C. Wente, A condenser transmitter as a uniformly sensitive instrument for the absolute measurement of sound intensity. Phys. Rev. 10, 39–63 (1917)ADSCrossRefGoogle Scholar
  5. 5.
    H.L.F. Helmholtz, On the Sensation of Tone as a Physiological Basis for the Theory of Music (Longmans & Co., London, 1885), ISBN 048660753-4. Reprinted Dover, 1954; See Ch. III – Analysis of musical tones by sympathetic resonanceGoogle Scholar
  6. 6.
    J. Tyndall, Sound, 7th edn. (Longmans, Green, and Co., New York, 1898), pp. 236–282, see Lecture VI – Singing FlamesGoogle Scholar
  7. 7.
    A.J. Zuckerwar, Theoretical response of condenser microphones. J. Acoust. Soc. Am. 64(5), 1278–1285 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Zuckerwar, Principles of operation of condenser microphones, in AIP Handbook of Condenser Microphones, ed. by G.S.K. Wong, T.F.W. Embleton (American Institute of Physics Press, New York, 1995); ISBN 156396284-5. See Chapter 3Google Scholar
  9. 9.
    H.W. Baerwald, The absolute noise level of microphones. J. Acoust. Soc. Am. 12(1), 131–139 (1940)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Combine, Gaseous Conductors: Theory and Engineering Application (McGraw-Hill, New York 1941), reprinted Dover 1958Google Scholar
  11. 11.
    F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz (On the potential difference required for spark initiation in air, hydrogen, and carbon dioxide at different pressures). Ann. Phys. 273(5), 69–75 (1889)CrossRefGoogle Scholar
  12. 12.
    T.W. Dakin, D. Berg, Theory of gas breakdown, in Progress in Dielectrics, vol. 4 ed. by J.B. Berks, J. Hart (Wiley & Sons, New York, 1962), pp. 152–198Google Scholar
  13. 13.
    R.S. Dhariwal, J.-M. Torres, M.P.Y. Desmulliez, Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. IEE Proc. Sci. Meas. Technol. 147(5), 261–265 (2000)CrossRefGoogle Scholar
  14. 14.
    M.S. Hawley, F.F. Romanow, J.E. Warren, The Western Electric 640AA capacitance microphone: its history and theory of operation, in AIP Handbook of Condenser Microphones, ed. by G.S.K. Wong, T.F. W. Embleton (American Institute of Physics Press, New York, 1995); ISBN 156396284-5. See Chapter 2Google Scholar
  15. 15.
    G.M. Sessler, J.E. West, D.A. Berkley, G. Morgenstern, Determination of spatial distribution of charges in thin dielectrics. Phys. Rev. Lett. 38(7), 368–371 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Sessler, J.E. West, Production of high quasipermanent charge densities on polymer foils by application of breakdown fields. J. Appl. Phys. 43(3), 922–926 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    G.M. Sessler, J.E. West, Electret transducers: a review. J. Acoust. Soc. Am. 53(6), 1589–1600 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    P.W. Chudleigh, Mechanism of charge transfer to a polymer surface by conducting liquid contact. J. Appl. Phys. 47(10), 4475–4483 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    G.M. Sessler, Physical principles of electrets, in Electrets, ed. By G.M. Sessler (Springer, New York, 1987); ISBN 9783540-17335-9. See §2.2.4 (Charging with liquid contact)Google Scholar
  20. 20.
    P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge, 1989): See Chapter 3Google Scholar
  21. 21.
    G.W. Elko, K.P. Harney, A history of consumer microphones: the electret condenser microphone meets the micro-electro-mechanical systems. Acoust. Today 5(2), 4–13 (2009)CrossRefGoogle Scholar
  22. 22.
    S.L. Garrett, S. Adams, S. Putterman, I. Rudnick, Resonant nonlinear mode conversion in He II. Phys. Rev. Lett. 41(6), 413–416 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    H. Palevsky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometers. Rev. Sci. Instrum. 18(5), 298–314 (1947)ADSCrossRefGoogle Scholar
  24. 24.
    G. Rietveld, H.E. van den Brom, Vibration reed electrometer for accurate measurement of electrical currents below 10 pA. IEEE Trans. Instrum. Meas. 56(2), 559–563 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Polturak, S.L. Garrett, S.G. Lipson, Precision acoustic gas analyzer for binary gas mixtures. Rev. Sci. Instrum. 57(11), 2837–2841 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    L.D. Landau, E.M. Lifshitz, Elasticity (Pergamon, London 1970); ISBN 0 08 006465 5. See §12Google Scholar
  27. 27.
    T.B. Gabrielson, Frequency constants for transverse vibration of annular disks. J. Acoust. Soc. Am. 105(6), 3311–3317 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    A. Leissa, in Vibration of Plates. NASA Report SP-160 (U.S. Government Printing Office, Washington, DC, 1969); reprinted by the Acoustical Society of America, 1993; ISBN 1-56396-294-2Google Scholar
  29. 29.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. I, Introduction (Addison-Wesley, Reading, 1963)Google Scholar
  30. 30.
    P. Loeppert, S.B. Lee, SiSonic™” – The first commercialized MEMS microphone. Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head, 4–8 June 2006Google Scholar
  31. 31.
    W.N. Sharpe, Jr., B. Yuan, R. Vaidyanathan, R.L. Edwards, Measurement of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon. Proceedings of the 10th International Workshop on Microelectromechanical Systems, Nagoya, Japan, 1997, pp. 424–429Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steven L. Garrett
    • 1
  1. 1.Pine Grove MillsUSA

Personalised recommendations