Advertisement

Three-Dimensional Enclosures

  • Steven L. Garrett
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

In this chapter, solutions to the wave equation that satisfies the boundary conditions in three-dimensional enclosures of different shapes are derived. This treatment is very similar to the two-dimensional solutions for waves on a membrane of Chap.  6. Many of the concepts introduced in Sect.  6.1 for rectangular membranes and Sect.  6.2 for circular membranes are repeated here with only slight modifications. These concepts include normal modes, modal degeneracy, and density of modes , as well as adiabatic invariance and the splitting of degenerate modes by perturbations. Throughout this chapter, familiarity with the results of Chap.  6 will be assumed. The similarities between the standing-wave solutions within enclosures of different shapes are stress ed. At high enough frequencies, where the individual modes overlap, statistical energy analysis will be introduced to describe the diffuse (reverberant) sound field.

Keywords

Acoustic Pressure Sound Field Radial Mode Azimuthal Mode Reverberation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.P. Eisenhart, Separable systems in Euclidean 3-space. Phys. Rev. 45(6), 427–428 (1934)ADSCrossRefGoogle Scholar
  2. 2.
    P.M. Morse, Vibration and Sound, 2nd edn. (McGraw-Hill, New York, 1948), p. 396. Reprinted (ASA, 1981); ISBN 0-88318-876-7Google Scholar
  3. 3.
    B.F.G. Katz, E.A. Wetherill, The fall and rise of the Fogg Art Museum Lecture Hall: a forensic study. Acoust. Today 3(3), 10–16 (2007)CrossRefGoogle Scholar
  4. 4.
    L.L. Beranek, Concert and Opera Halls: How They Sound (Acoustical Society of America, Melville, 1996); ISBN 1-56396-530-5Google Scholar
  5. 5.
    L.L. Beranek, Concert hall acoustics: recent findings. J. Acoust. Soc. Am. 139(4), 1548–1556 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J. Liu, S. Garrett, Relationship between Nusselt number and the thermoviscous (Rott) functions, J. Acoust. Soc. Am. 119(3), 1457–1462 (2006) (Complex compressibility discussed)Google Scholar
  7. 7.
    Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, ASTM C423-02a, 1990 (American Society for Testing and Materials, Philadelphia)Google Scholar
  8. 8.
    Measurement of Sound Absorption in a Reverberation Room, ISO 354, International Organization for Standardization, GenevaGoogle Scholar
  9. 9.
    M.R. Schroeder, The ‘Schroeder frequency’ revisited. J. Acoust. Soc. Am. 99(5), 3240–3241 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    K.A. Gillis, M.R. Moldover, A.R.H. Goodwin, Accurate acoustic measurements in gases under difficult conditions. Rev. Sci. Instrum. 62, 2213–2217 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987); ISBN 0 7506 2767 0. §15Google Scholar
  12. 12.
    R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (Wiley, New York, 1974)Google Scholar
  13. 13.
    R.T. Weidner, R.L. Sells, Elementary Modern Physics (Allyn and Bacon, Boston, 1960)Google Scholar
  14. 14.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Applied Mathematics Series #55, 1964)Google Scholar
  15. 15.
    E. Polturak, S.L. Garrett, S.G. Lipson, Precision acoustic gas analyzer for binary gas mixtures. Rev. Sci. Instrum. 57(11), 2837–2841 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    E. Jahnke, F. Emde, Tables of Functions with Formulae and Curves, 4th edn. (Dover, New York, 1945)zbMATHGoogle Scholar
  17. 17.
    P.M. Morse, Vibration and Sound, 2nd edn. (McGraw-Hill, New York, 1948). Reprinted by the Acoust. Soc. Am. (1995); ISBN 0-88318-876-7. See §32Google Scholar
  18. 18.
    I. Rudnick, Physical Acoustics at UCLA in the Study of Superfluid Helium, in Proceedings of E. Fermi Summer School, Varenna, Italy (1974)Google Scholar
  19. 19.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), Problem #19, pp. 603–604Google Scholar
  20. 20.
    J.D. Maynard, Topics in Acoustics, (Class Notes) (The Pennsylvania State University, State College, 2006)Google Scholar
  21. 21.
    D.C. Swanson, Precision spectral peak frequency measurement using a window leakage ratio function, Mech. Syst. Signal. Process. 54–55, 1–15 (2015)Google Scholar
  22. 22.
    M. Greenspan, Simple derivation of the Boltzmann-Ehrenfest adiabatic principle. J. Acoust. Soc. Am. 27(1), 34–35 (1955)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    O.B. Wilson, R.W. Leonard, Measurements of sound absorption in aqueous salt solutions using a resonance method. J. Acoust. Soc. Am. 26(2), 223–226 (1954)ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Jones, I.I. Shapiro, P.E. Zadunaisky, Solar radiation effects, gas leakage rates, and air densities inferred from the orbit of Echo I, ed. by H.C. Van De Hulst, C. De Jager, A.F. Moore, in Proceedings of Second International Space Science Symposium, Florence, April 10–14, 1961 (North Holland, 1961)Google Scholar
  25. 25.
    P.-J. Shih, Y.-R. Guo, Resonance frequency of fluid-filled and prestressed spherical shell—a model of the human eyeball. J. Acoust. Soc. Am. 139(4), 1784–1792 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M.R. Moldover, J.P.M. Trusler, T.J. Edwards, J.B. Mehl, R.S. Davis, Measurement of the universal gas constant using a spherical acoustic resonator, Phys. Rev. Lett. 60(4), 249–252 (1988); M.R. Moldover, et al., J. Research National Bureau of Standards (US) 93, 85–144 (1988)Google Scholar
  27. 27.
    B.G. Schreger, Laennec’s new system of diagnosis. Q. J. Foreign Med. Surg. 2, 51–68 (1820)Google Scholar
  28. 28.
    K.U. Ingard, Fundamentals of Waves and Oscillations (Cambridge University Press, New York, 1988); ISBN 0 521 33957 XGoogle Scholar
  29. 29.
    C.M. Harris, Noise Control in Buildings: A Practical Guide for Architects and Engineers (McGraw-Hill, New York, 1994); ISBN 0-07-028887-8Google Scholar
  30. 30.
    C.F. Eyring, Reverberation time in ‘dead’ rooms. J. Acoust. Soc. Am. 1(1), 217–241 (1930)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    E.A. Avallone, T. Baumeister II (eds.), Marks’ Standard Handbook for Mechanical Engineers, 10th edn. (McGraw-Hill, New York, 1996); ISBN 0-07-004997-1. See Table 8.7.31, p. 8–193Google Scholar
  32. 32.
    P.A. Nelson, S.J. Elliot, Active Control of Sound (Academic, New York, 1993); ISBN 0-12-515426-7Google Scholar
  33. 33.
    S.L. Garrett, J.A. Smith, R.W.M. Smith, B.J. Heidrich, M.D. Heibel, Using the sound of nuclear energy. Nucl. Technol. 195(3), 353–362 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steven L. Garrett
    • 1
  1. 1.Pine Grove MillsUSA

Personalised recommendations