Advertisement

Radiation and Scattering

  • Steven L. Garrett
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

At this point, we have made a rather extensive investigation into the mechanisms and behaviors of sound that excites Helmholtz resonators or propagates as plane wave through uniform or inhomogeneous media. We have not, as yet, dealt with how that sound is actually produced. Our experience tells us that sound can be generated by vibrating objects (e.g., loudspeaker cones, stringed musical instruments, drums, bells) or by modulated or unstable flows (e.g., jet engine exhaust, whistles, fog horns), or by electrical discharges in the atmosphere (i.e., thunder), or by optical absorption (e.g., modulated laser beams). In this chapter, we will develop the perspective and tools that will used for the calculation of the radiation efficiency of various sources and combinations of sources, like the sound reinforcement system shown in Fig. 12.1.

Keywords

Sound Source Acoustic Pressure Sound Field Surrounding Fluid Volume Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Kinsman, Wind Waves: Their Generation and Propagation on the Ocean Surface (Prentice-Hall, Upper Saddle River, NJ, 1965)Google Scholar
  2. 2.
    R. Weir, J. Garcia, D. Healy, R. Wickersham, Large room acoustics versus music. J. Acoust. Soc. Am. 58, S4 (1975)CrossRefGoogle Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987); ISBN 0-7506-2767-0. See §15Google Scholar
  4. 4.
    P.M. Morse, Vibration and Sound, 2nd edn. (McGraw-Hill, New York, 1948). See §27. Reprinted by the Acoust. Soc. Am. (1995); ISBN 0-88318-876-7Google Scholar
  5. 5.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987); ISBN 0-7506-2767-0. §61Google Scholar
  6. 6.
    M. Minnaert, Musical air bubbles and the sounds of running water. Philos. Mag. 16, 235–248 (1933)CrossRefGoogle Scholar
  7. 7.
    M. Strasberg, The pulsation frequency of nonspherical gas bubbles in liquids. J. Acoust. Soc. Am. 25(3), 536–537 (1953)ADSCrossRefGoogle Scholar
  8. 8.
    T.F. Argo IV, P.S. Wilson, V. Palan, Measurement of the resonance frequency of single bubbles using a laser Doppler vibrometer. J. Acoust. Soc. Am. 123(6), EL121–EL125 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    C. Devin Jr., Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water. J. Acoust. Soc. Am. 31(12), 1654–1667 (1959)ADSCrossRefGoogle Scholar
  10. 10.
    O.B. Wilson, An Introduction to the Theory and Design of Sonar Transducers (Peninsula, Los Altos, CA, 1989); ISBN 978-0932146229Google Scholar
  11. 11.
    R.L. Prichard, Mutual acoustic impedance between radiators in an infinite rigid plane. J. Acoust. Soc. Am. 32(6), 730–737 (1960)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Hanish, A Treatise on Acoustic Radiation. Vol. IV—Mutual Radiation Impedance and Other Special Topics (Naval Research Lab, Washington, DC, 1987)Google Scholar
  13. 13.
    T. Young, The Bakerian Lecture [1803]: experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond. 94, 1–16 (1804)CrossRefGoogle Scholar
  14. 14.
    A. Howie, J.E. Ffowcs-Williams, Preface. Philos. Trans. R. Soc. Lond. A360, 805–806 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (McGraw-Hill, New York, 1981), pp. 482–486; ISBN 0-07-049961-6. Also reprinted by the Acoustical Society of America, 1989Google Scholar
  16. 16.
    W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1939); §5.08Google Scholar
  17. 17.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962)zbMATHGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987); ISBN 0-7506-2767-0. §11Google Scholar
  19. 19.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968) §7.1Google Scholar
  20. 20.
    A.U. Case, The vocal microphone: technology and practice. Phys. Today 69(3), 74–75 (2016)CrossRefGoogle Scholar
  21. 21.
    B. Baumzweiger, Microphone apparatus, U.S. Patent No. 2,184,247, 19 Dec 1939Google Scholar
  22. 22.
    M.S. Pettersen, 75th anniversary of the Shure Unidyne® microphone. J. Acoust. Soc. Am. 136, 2129 (2014)CrossRefGoogle Scholar
  23. 23.
    W.L. Dooley, Ribbon microphones. J. Acoust. Soc. Am. 136, 2130 (2014)CrossRefGoogle Scholar
  24. 24.
    L.L. Beranek, Acoustics (Acoustical Society of America, Woodbury, NY, 1996); ISBN 0-88318-494-X. See Part XVI, §6.7.Google Scholar
  25. 25.
    T.B. Gabrielson, Theory of operation for the DIFAR flux-gate compass, Naval Air Development Center Technical Memorandum 3031-86-02 (1986)Google Scholar
  26. 26.
    S. Tempkin, Elements of Acoustics (Wiley, New York, 1981); ISBN 0-471-05990-0. See §5.5Google Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987); ISBN 0-7506-2767-0. §74, see Problem 1Google Scholar
  28. 28.
    T.B. Gabrielson, D.L. Gardner, S.L. Garrett, A simple neutrally-buoyant sensor for direct measurement of particle velocity and intensity in water. J. Acoust. Soc. Am. 97(4), 2227–2237 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1987). §11, Problem 1 (for an alternative derivation)Google Scholar
  30. 30.
    S.L. Garrett, D.L. Gardner, Multiple axis fiber optic interferometric seismic sensor, U.S. Patent No. 4,893,930, 16 Jan 1990Google Scholar
  31. 31.
    D.L. Gardner, S.L. Garrett, A fiber optic interferometric seismic sensor with hydrophone applications. U.S. Navy J. Underwater Acoustic. JUA(USN) 38(1), 1–21 (1988)Google Scholar
  32. 32.
    J.W. Strutt (Lord Rayleigh), On the light from the sky, its polarization and colour. Phil. Mag. XLI, 107–120 and 274–279 (1871); Scientific Papers, Vol. I, (Dover, 1964) §8Google Scholar
  33. 33.
    J.W. Strutt (Lord Rayleigh), On the scattering of light from small particles. Phil. Mag. XLI, 447–454 (1871); Scientific Papers, Vol. I, (Dover, 1964) §9Google Scholar
  34. 34.
    H. Lamb, The Dynamical Theory of Sound, 2nd edn. (Arnold, London, 1925), §79. Reprinted by Dover, 1960Google Scholar
  35. 35.
    T.G. Leighton, The Acoustic Bubble (Cambridge University Press, Cambridge, 1994); ISBN 0-12441-920-8. See §4.1.2Google Scholar
  36. 36.
    F.S. Crawford, The hot chocolate effect. Am. J. Phys. 50(5), 398–404 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 4th edn. (Academic Press, New York, 1980); ISBN 0-12-294760-6. See Eq. (0.112)Google Scholar
  38. 38.
    K.U. Ingard, Fundamentals of Waves and Oscillations (Cambridge University Press, Cambridge, 1988); ISBN 0-521-33957-XGoogle Scholar
  39. 39.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series #55, p. 360, Eq. 9.1.20Google Scholar
  40. 40.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series #55, p. 360, Eq. 9.1.30Google Scholar
  41. 41.
    L.L. Beranek, Acoustics (Acoustical Society of America, Woodbury, NY, 1996); ISBN 0-88318-494-X. See Part X, §4.3Google Scholar
  42. 42.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series #55, p. 409, Table 9.5: Zeros and Associated values of Bessel Functions and Their DerivativesGoogle Scholar
  43. 43.
    I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 4th edn. (Academic Press, New York, 1980); ISBN 0-12-294760-6, p. 446, Eq. 3.821(9)Google Scholar
  44. 44.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968), pp. 383–387Google Scholar
  45. 45.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series #55, p. 360, Chapter 12: Struve Functions and Related Functions, p. 496ffGoogle Scholar
  46. 46.
    M. Greenspan, Piston radiator: some extensions of the theory. J. Acoust. Soc. Am. 65(3), 608–621 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    R.H. Mellen, M.B. Moffett, A model for parametric sonar radiator design. U.S. Navy J. Underwater Acoustic. 22, 105–116 (1972)Google Scholar
  48. 48.
    H.M. Merklinger, High intensity effects in the non-linear acoustic parametric end-fire array, Ph.D. thesis, University of Birmingham, 1971Google Scholar
  49. 49.
    D.T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000); ISBN 0-471-31979-1. Chapter 13, §CGoogle Scholar
  50. 50.
    N.A.M. Schellart, A.N. Popper, in The Evolutionary Biology of Hearing, ed by D. B. Webster, R. R. Fay, A. N. Popper. Functional aspects of the evolution of the auditory system in Actinopterygian fish (Springer, New York, 1992), pp. 295–322CrossRefGoogle Scholar
  51. 51.
    F.V. Hunt, Electroacoustics (Harvard University Press, New York, 1954) See Fig. 5.1CrossRefGoogle Scholar
  52. 52.
    S.L. Garrett, J.A. Smith, R.W.M. Smith, B.J. Heidrich, M.D. Heibel, Fission powered in-core thermoacoustic sensor. Appl. Phys. Lett. 108, 144102 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steven L. Garrett
    • 1
  1. 1.Pine Grove MillsUSA

Personalised recommendations