Advertisement

One-Dimensional Propagation

  • Steven L. Garrett
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Having already invested in understanding both the equation of state in Chap.  7 and in the hydrodynamic equations in Chap.  8, only straightforward algebraic manipulations will be required to derive the wave equation, justify its solutions, calculate the speed of sound in fluids, and derive the expressions for acoustic intensity and the acoustic kinetic and potential energy densities. The “machinery” developed to describe waves on strings will be sufficient to describe one-dimensional sound propagation in fluids, even though the waves on the string were transverse and the one-dimensional waves in fluids are longitudinal.

Keywords

Sound Speed Sound Source Sound Pressure Level Acoustic Pressure Transfer Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1978); ISBN 0 521 29233 6 (paperback). See §2.6.Google Scholar
  2. 2.
  3. 3.
    V.A. Del Grosso, New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am. 56(4), 1084–1091 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Zuckerwar, D.S. Mazel, Sound speed measurements in liquid oxygen-liquid nitrogen mixtures, NASA Technical Report 2464, 1985Google Scholar
  5. 5.
    M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Acoustic gas thermometry. Metrologia 51, R1–R19 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M.R. Moldover et al., Measurement of the universal gas constant ℜ using a spherical acoustic resonator. J. Res. NBS 93, 85–144 (1988)Google Scholar
  7. 7.
    M. Greenspan, Comments on ‘Speed of sound in standard air’. J. Acoust. Soc. Am. 82(1), 370–372 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    E. Polturak, S.L. Garrett, S.G. Lipson, Precision acoustic gas analyzer for binary mixtures. Rev. Sci. Instrum. 57, 2837–2841 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    F.W. Giacobbe, Estimation of Prandtl numbers in binary mixtures of helium and other noble gases. J. Acoust. Soc. Am. 96(6), 3568–3680 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Stanford Research Systems Model BGA244, Binary Gas Analyzer, www.thinkSRS.com
  11. 11.
    S. Garrett, Sonic gas analyzer for hydrogen and methane, in Proceeding of Acoustics 08, Paris, 29 June–4 July, 2008, pp. 2767–2772Google Scholar
  12. 12.
    S.L. Garrett, G.W. Swift, R.E. Packard, Helium gas purity monitor for recovery systems. Physica 107B, 601–602 (1981)Google Scholar
  13. 13.
    M.V. Golden, R.M. Keolian, S.L. Garrett, Sonic gas analyzers, in Proceedings 16th International Congress on Acoustics and 135th Meeting of Acoustical Society of America, vol. III, Seattle, WA, 20-26 June 1998, pp. 1705–1706Google Scholar
  14. 14.
    G.M. Sessler, J.E. West, Electret transducers: a review. J. Acoust. Soc. Am. 53(6), 1589–1600 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    National Semiconductor Model LM2907Google Scholar
  16. 16.
    J.N. Tjøtta, S. Tjøtta, Nonlinear equations of acoustics, in Frontiers of Nonlinear Acoustics: Proceedings of 12th International Symposium on Nonlinear Acoustics, ed. M.F. Hamilton, D.T. Blackstock (Elsevier, London, 1990)Google Scholar
  17. 17.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn. (Butterworth-Heinemann, New York, 1987), ISBN 0 7506 2767 0, §81Google Scholar
  18. 18.
    F.M.F. Chapman, Decibels, SI units, and standards, J. Acoust. Soc. Am. 108(2), 480 (2000)Google Scholar
  19. 19.
    H. Fletcher, W.A. Munson, Loudness, its definition, measurement, and calculation. J. Acoust. Soc. Am. 5(2), 82–108 (1933)ADSCrossRefGoogle Scholar
  20. 20.
    D.W. Robinson, R.S. Dadson, A re-determination of the equal-loudness relations for pure tones. Br. J. Appl. Phys. 7, 166–188 (1956)ADSCrossRefGoogle Scholar
  21. 21.
    ISO 226: Acoustics—normal equal-loudness contours (International Standards Organization, Geneva, 2003)Google Scholar
  22. 22.
    B.R. Glasberg, B.C.J. Moore, Prediction of absolute thresholds and equal loudness contours using a modified loudness model. J. Acoust. Soc. Am. 120(2), 585–588 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    American National Standard for Sound Level Meters, ANSI-ASA S1.4-1983, most recently reaffirmed by the American National Standards Institute (ANSI), 21 Mar 2006Google Scholar
  24. 24.
    S. Fidell, A review of US aircraft noise regulatory policy. Acoust. Today 11(4), 26–34 (2015)Google Scholar
  25. 25.
    P.D. Schomer, Criteria for assessment of noise annoyance. Noise Control Eng. J. 53(4), 132–144 (2005)CrossRefGoogle Scholar
  26. 26.
    American National Standard Method for the Calculation of the Speech Intelligibility Index, ANSI-ASA S3.5-1997Google Scholar
  27. 27.
    G.W. Swift, Thermoacoustic engines. J. Acoust. Soc. Am. 84(4), 1145–1180 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    W.R. MacLean, Absolute measurement of sound without a primary standard. J. Acoust. Soc. Am. 12(1), 140–146 (1940)ADSCrossRefGoogle Scholar
  29. 29.
    J.W. Strutt (Lord Rayleigh), Proc. London Math. Soc. 4, 357 (1983); Scientific Papers, vol. I, (Dover, 1964), pp. 140. Note: The Scientific Papers are available from the Acoustical Society of America in a fully-searchable version on CD-ROMGoogle Scholar
  30. 30.
    R.K. Cook, Absolute pressure calibrations of microphones, J. Res. Nat’l. Bur. Standards 25, 489 (1940) and J. Acoust. Soc. Am. 12(1), 415–420 (1941)Google Scholar
  31. 31.
    G.S.K. Wong, T.F.W. Embleton (eds.), AIP Handbook of Condenser Microphones (Am. Inst. Phys., 1995); ISBN 1-56396-284-5. Chapters 8–12Google Scholar
  32. 32.
    L.L. Foldy, H. Primakoff, A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem. I, J. Acoust. Soc. Am. 17(2), 109–120 (1945) and H. Primakoff, L.L. Foldy, A general theory of passive linear electroacoustic transducers and the electroacoustic reciprocity theorem. II, J. Acoust. Soc. Am. 19(1), 50–58 (1947)Google Scholar
  33. 33.
    F.V. Hunt, Electroacoustics: The Analysis of Transduction, and its Historical Background (Acoust. Soc. Am, 1982). Originally published by Wiley, 1954. See Ch. 5Google Scholar
  34. 34.
    I. Rudnick, Unconventional reciprocity calibration of transducers. J. Acoust. Soc. Am. 63(3), 1923–1925 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    S.L. Garrett, S. Adams, S. Putterman, I. Rudnick, Resonant nonlinear mode conversion in He II. Phys. Rev. Lett. 41, 413–416 (1978)ADSCrossRefGoogle Scholar
  36. 36.
    G.W. Swift, S.L. Garrett, Resonance reciprocity calibration of an ultracompliant transducer. J. Acoust. Soc. Am. 81(5), 1619–1623 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    G.S.K. Wong, Primary pressure calibration by reciprocity, in AIP Handbook of Condenser Microphones, eds. by G.S.K. Wong, T.F.W. Embleton (Am. Inst. Phys., 1995); ISBN 1-56396-284-5Google Scholar
  38. 38.
    V. Nedzelintsky, Primary method for calibrating free-field response, in AIP Handbook of Condenser Microphones, eds. G.S.K. Wong, T.F.W. Embleton (Am. Inst. Phys., 1995); ISBN 1-56396-284-5Google Scholar
  39. 39.
    I. Rudnick, M.N. Stein, Reciprocity free field calibration of microphones to 100 Kc in air. J. Acoust. Soc. Am. 20(6), 818–825 (1948)ADSCrossRefGoogle Scholar
  40. 40.
    R.S. Wakeland, Use of electrodynamic drivers in thermoacoustic refrigerators. J. Acoust. Soc. Am. 107(2), 827–832 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    C.H. Allen, I. Rudnick, A powerful high frequency siren. J. Acoust. Soc. Am. 19(5), 857–865 (1947)ADSCrossRefGoogle Scholar
  42. 42.
    W.L. Nyborg, Acoustic streaming, in Physical Acoustics, vol. IIB, ed. by W.P. Mason (Academic Press, New York, 1964)Google Scholar
  43. 43.
    J.K. Hilliard, Historical review of horns used for audience-type sound reproduction. J. Acoust. Soc. Am. 59(1), 1–8 (1976)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    P.M. Morse, Vibration and Sound, 2nd edn. (McGraw-Hill, New York, 1948). Reprinted by the Acoust. Soc. Am., 1995; ISBN 0-88318-876-7. See Fig. 58Google Scholar
  45. 45.
    V. Salmon, Generalized plane wave horn theory, J. Acoust. Soc. Am. 17(3), 199–211 (1946) and A new family of horns, J. Acoust. Soc. Am. 17(3), 212–218 (1946)Google Scholar
  46. 46.
    P. Bèquin, C.L. Morfey, Weak nonlinear propagation of sound in a finite exponential horn. J. Acoust. Soc. Am. 109(6), 2649–2659 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    L.L. Beranek, Acoustics (Acoust. Soc. Am., 1996); ISBN 0-88318-494-X. Chapter 9Google Scholar
  48. 48.
    M. Kleiner, Electroacoustics (Taylor & Francis, 2013); ISBN 978-1-4398-3618-70. Chapter 19Google Scholar
  49. 49.
    H. Witschi, Profiles in toxicology, Fritz Haber: 1868-1934. Toxicol. Sci. 55, 1–2 (2000)CrossRefGoogle Scholar
  50. 50.
    P.W. Mullen, Modern Gas Analysis (Interscience, New York, 1955)Google Scholar
  51. 51.
    L.L. Beranek, Acoustic Measurements (Wiley, New York, 1949), pp. 161–171Google Scholar
  52. 52.
    A.E. Aliev et al., Underwater sound generation using carbon nanotube projectors. Nano Letters (Am. Chem. Soc.) 10, 2374–2380 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steven L. Garrett
    • 1
  1. 1.Pine Grove MillsUSA

Personalised recommendations