Skip to main content

Mathematical Models of Neuromodulation and Implications for Neurology and Psychiatry

  • Chapter
  • First Online:
Computational Neurology and Psychiatry

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 6))

Abstract

We use mathematical modeling to study how the electrophysiology and the pharmacology of the brain affect each other and brain function. Necessarily, this involves understanding volume transmission by which neurons in a brain nucleus project to distant nuclei and change the local biochemistry there. Examples include the serotonergic projection from the dorsal raphe nucleus to the striatum and the dopaminergic projection from the substantial nigra pars compacta to the striatum. The serotonin concentration in the striatum affects dopamine release in the striatum through receptors on the dopamine terminals. The concept of volume transmission is discussed and other examples of volume transmission are given. We describe how we construct our mathematical models based on known physiology and biochemistry. We describe model results that show how autoreceptors buffer the serotonin system against genetic polymorphisms and we explain why the brain serotonin concentration depends on diet but the dopamine concentration does not. We discuss the traditional hypotheses about the mechanism of action of selective sserotonin reuptake inhibitors (SSRIs), and introduce a new hypothesis about the mechanisms of SSRIs. We explain why the serotonin system has a large effect on the efficacy of levodopa treatment for Parkinson’s disease and why dyskinesias occur as the disease progresses. Finally, we study various aspects of the homeostasis of dopamine in the striatum. Volume transmission raises many new, interesting questions for the mathematical neuroscience community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adell, A., Celada, P., Abella, M.T., Artigasa, F.: Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39, 154–180 (2002)

    Article  Google Scholar 

  2. Agid, Y.: Parkinson’s disease: pathophysiology. Lancet 337, 1321–1324 (1991)

    Article  Google Scholar 

  3. Ahlskog, J.E.: Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77, 288–294 (2011)

    Article  Google Scholar 

  4. Albin, R.L., Young, A.B., Penney, J.B.: The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989)

    Article  Google Scholar 

  5. Anderson, G.M., Barr, C.S., Lindell, S., Durham, A.C., Shifrovich, I., Higley, J.D.: Time course of the effects of the serotonin-selective reuptake inhibitor sertraline on central and peripheral serotonin neurochemistry in the rhesus monkey. Psychopharmacology 178, 339–346 (2005)

    Article  Google Scholar 

  6. Beaulieu, J.M., Gainetdinov, R.R.: The physiology, signaling and pharmacology of dopamine receptors. Pharmacological Reviews 63(1), 182–217 (2011)

    Article  Google Scholar 

  7. Behn, C.D., Booth, V.: Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network. J Neurophysiol 103, 1937–1953 (2010)

    Article  Google Scholar 

  8. Bel, N., Artigas, F.: Fluoxetine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur. J. Pharmacol. 229, 101–103 (1992)

    Article  Google Scholar 

  9. Belanger, M., Allaman, I., Magistretti, P.J.: Brain energy metabolism: focus on astrocyte-neuron metabolic coooperation. Cell Metabolism 14, 724–738 (2011)

    Article  Google Scholar 

  10. Benkelfat, C., Ellenbogen, M.A., Dean, P., Palmour, R.M., Young, S.N.: Mood-lowering effect of tryptophan depletion. Arch. Gen. Psych. 51, 687–697 (1994)

    Article  Google Scholar 

  11. Benmansour, S., Owens, W.A., Cecchi, M., Morilak, D., Frazer, A.: Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of the transporter. J. Neurosci. 22(15), 6766–6772 (2002)

    Google Scholar 

  12. Bergman, H., Wichmann, T., Karmon, B., DeLong, M.: The primate subthalamic nucleus. II. neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72, 507–520 (1994)

    Google Scholar 

  13. Bergstrom, B., Garris, P.: “Passive stabilization” of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson’s disease: a voltammetric study in the 6-OHDA-lesioned rat. J. Neurochem. 87, 1224–1236 (2003)

    Google Scholar 

  14. Best, J., Park, C., Terman, D., Wilson, C.: Transitions between irregular and rhythmic firing patterns in an excitatory-inhibitory neuronal network. J Comp Neurosci 23, 217–235 (2007)

    Article  MathSciNet  Google Scholar 

  15. Best, J.A., Nijhout, H.F., Reed, M.C.: Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor Biol Med Model 6, 21 (2009)

    Article  Google Scholar 

  16. Best, J.A., Nijhout, H.F., Reed, M.C.: Serotonin synthesis, release and reuptake in terminals: a mathematical model. Theor Biol Med Model 7, 34– (2010)

    Google Scholar 

  17. Bezard, E., Dovero, S., C, C.P., Ravenscroft, P., Chalon, S., Guilloteau, D., Crossman, A.R., Bioulac, B., Brotchie, J.M., Gross, C.E.: Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Neurosci 21, 6853–6861 (2001)

    Google Scholar 

  18. Birzniece, V., Johansson, I.M., Wang, M.D., Secki, J.R., Backstrom, T., Olsson, T.: Serotonin 5-HT1A receptor mRNA expression in dorsal hippocampus and raphe nuclei after gonadal hormone manipulation in female rats. Neuroendocrinology 74(2), 135–142 (2001)

    Article  Google Scholar 

  19. Blandina, P., Goldfarb, J., Craddock-Royal, B., Green, J.P.: Release of endogenous dopamine by stimulation of 5-hydroxytryptamine3 receptors in rat striatum. J. Pharmacol. Exper. Therap. 251, 803–809 (1989)

    Google Scholar 

  20. Blier, P., de Montigny, C., Chaput, Y.: Modifications of the serotonin system by antidepressant treatment: implications for the therapeutic response in major depression. J. Clin. Psychoharmaco1. 7, 24S–35S (1987)

    Google Scholar 

  21. Bloom, D.E., Cafiero, E.T., Jané-Llopis, E., Abrahams-Gessel, S., Bloom, L.R., Fathima, S., Feigl, A.B., Gaziano, T., Mowafi, M., Pandya, A., Prettner, K., Rosenberg, L., Seligman, B., Stein, A.Z., Weinstein, C.: The global economic burden of noncommunicable diseases. Harvard School of Public Health, World Economic Forum (2011)

    Google Scholar 

  22. Bonhomme, N., Duerwaerdère, P., Moal, M., Spampinato, U.: Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 34, 269–279 (1995)

    Article  Google Scholar 

  23. Borah, A., Mohanakumar, K.P.: Long-term L-DOPA treatmeant causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. Cell. Mol. Neurobiol. 27, 985–996 (2007)

    Article  Google Scholar 

  24. Brooks, D.J.: Dopamine agonists: their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg Psychiatry 68, 685–689 (2000)

    Article  Google Scholar 

  25. Carlsson, A.: Perspectives on the discovery of central monoaminergic neurotransmission. Annu. Rev. Neurosci. 10, 19–40 (1987)

    Article  Google Scholar 

  26. Carta, M., Carlsson, T., Kirik, D., Björklund, A.: Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130, 1819–1833 (2007)

    Article  Google Scholar 

  27. Celada, P., Puig, M.V., Casanovas, J.M., Guillazo, G., Artigas, F.: Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA\(_{A}\), and glutamate receptors. J. Neurosci 15, 9917–9929 (2001)

    Google Scholar 

  28. Chaput, Y., Blier, P., de Montigny, C.: In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J. Neurosci 6(10), 2796–2801 (1986)

    Google Scholar 

  29. Chen, H., Zhang, S.M., Schwarzschild, M.A., Hernan, M.A., Ascherio, A.: Physical activity and the risk of Parkinson disease. Neurology 64, 664–669 (2005)

    Article  Google Scholar 

  30. Chen, J., Wang, E., Cepeda, C., Levine, M.: Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front. Neurosci. 7 (2013)

    Google Scholar 

  31. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body, and environment. Trends Neuroscience 20, 553–557 (1997)

    Article  Google Scholar 

  32. Cipriani, A., Furukawa, T., Salanti, G., Geddes, J., Higgins, J., Churchill, R., Watanabe, N., Nakagawa, A., Omori, I., McGuire, H., Tansella, M., Barbui, C.: Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373, 746–758 (2009)

    Article  Google Scholar 

  33. Cooper, J., Bloom, F., Roth, R.: The Biochemical Basis of Neuropharmacology. Oxford U. Press, New York, NY (2003)

    Google Scholar 

  34. Cunha, R.A.: Different cellular sources and different roles of adenosine: A\(_1\) receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A\(_{2A}\) receptor-mediated facilitation of plasticity. Neurochem. Int. 52, 65–72 (2008)

    Article  Google Scholar 

  35. DeLong, M.: Primate models of movement disorders of basal ganglia origin. TINS 13, 281–285 (1990)

    Google Scholar 

  36. Dentresangle, C., Cavorsin, M.L., Savasta, M., Leviel, V.: Increased extracellular DA and normal evoked DA release in the rat striatum after a partial lesion of the substantia nigra. Brain Res 893(178–185) (2001)

    Google Scholar 

  37. Deurwaerdère, P., Bonhomme, N., Lucas, G., Moal, M., Spampinato, U.: Serotonin enhances striatal overflow in vivo through dopamine uptake sites. J. neurochem. 66, 210–215 (1996)

    Article  Google Scholar 

  38. Duncan, R.P., M.Earhart, G.: Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease. Neurorehabilitation and Neural Repair 26(2), 132–143 (2012)

    Article  Google Scholar 

  39. Feldman, R., Meyer, J., Quenzer, L.: Principles of Neuropharmacology. Sinauer Associates, Inc, Sunderland, MA. (1997)

    Google Scholar 

  40. Fernstrom, J.: Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 63, 484–546 (1983)

    Google Scholar 

  41. Fernstrom, J., Wurtman, R.D.: Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149–152 (1971)

    Article  Google Scholar 

  42. Fornal, C., Litto, W., Metzler, C.: Single-unit responses of serotonergic dorsal raphe neurons to 5-ht1a agonist and antagonist drug administration in behaving cats. J. Pharmacol. Exper. Therap. 270, 1345–1358 (1994)

    Google Scholar 

  43. Frisina, P.G., Haroutunian, V., Libow, L.S.: The neuropathological basis for depression in Parkinson’s disease. Parkinsonism Relat Disord 15(2), 144–148 (2009)

    Article  Google Scholar 

  44. de la Fuente-Fernandez, R., Lu, J.Q., Sossi, V., Jivan, S., Schulzer, M., Holden, J.E., Lee, C.S., Ruth, T.J., Calne, D.B., Stoessl, A.J.: Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Annals of Neurology 49(3), 298–303 (2001)

    Article  Google Scholar 

  45. Fuxe, K., Dahlstrom, A.B., Jonsson, G., Marcellino, D., Guescini, M., Dam, M., Manger, P., Agnati, L.: The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90, 82–100 (2010)

    Article  Google Scholar 

  46. Gartside, S.E., Umbers, V., Hajos, M., Sharp, T.: Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br. J. Pharmacol. 115, 1064–1070 (1995)

    Article  Google Scholar 

  47. Gelenberg, A., Chesen, C.: How fast are antidepressants? J. Clin. Psychiatry 61, 712–721 (2000)

    Article  Google Scholar 

  48. Gerfen, C.R., Surmeier, D.J.: Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011)

    Article  Google Scholar 

  49. Gonzalez, O., Berry, J., McKight-Eily, L., Strine, T., Edwards, K., Kroft, J.: Current depression among adults - United States, 2006, 2008. Center for Disease Control and Prevention (2010)

    Google Scholar 

  50. Graupner, M., Gutkin, B.: Modeling nicotinic neuromodulation from global functional and network levels to nAChR based mechanisms. Acta Pharmacologica Sinica 30, 681–693 (2009)

    Article  Google Scholar 

  51. Haber, S.N., Calzavara, R.: The cortico-basal gangia integrative network: the role of the thalamus. Brain Research Bulletin 78, 69–74 (2009)

    Article  Google Scholar 

  52. Hahn, M., Mazei-Robison, M., Blakely, R.: Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol. Pharmacol. 68, 457–466 (2005)

    Article  Google Scholar 

  53. Hajos, M., Gartside, S.E., Villa, A.E.P., Sharp, T.: Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat. Neuroscience 69, 189–197 (1995)

    Article  Google Scholar 

  54. Hajos, M., Sharp, T.: Burst-firing activity of presumed 5-ht neurones of the rat dorsal raphe nucleus: electrophysiological analysis by antidromic stimulation. Brain Res. 740, 162–168 (1996)

    Article  Google Scholar 

  55. Haldane, J.: Enzymes. Longmans, Green and Co, New York (1930)

    Google Scholar 

  56. Heisler, L.K., Pronchuk, N., Nonogaki, K., Zhou, L., Raber, J., Tung, L., Yeo, G.S.H., O’Rahilly, S., Colmers, W.F., Elmquist, J.K., Tecott, L.H.: Serotonin activates the hypothalamic–pituitary–adrenal axis via serotonin 2C receptor stimulation. J. Neurosci. 27(26), 6956–6964 (2007)

    Article  Google Scholar 

  57. Hervás, I., Artigas, F.: Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. role of 5-HT autoreceptors. Eur. J. Pharmacol. 358, 9–18 (1998)

    Article  Google Scholar 

  58. Hervás, I., Vilaró, M.T., Romero, L., Scorza, M., Mengod, G., Artigas, F.: Desensitization of 5-HT\(_{1A}\) autoreceptors by a low chronic fluoxetine dose. effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 24, 11–20 (2001)

    Article  Google Scholar 

  59. Heyn, J., Steinfels, G., Jacobs, B.: Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Res. 251, 259–276 (1982)

    Article  Google Scholar 

  60. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 117(4), 500–544. (1952)

    Article  Google Scholar 

  61. Hornung, J.P.: The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331–343 (2003)

    Article  Google Scholar 

  62. Hurtado, J., Gray, C., Tamas, L., Sigvardt, K.: Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc. Nat. Acad. Sci. 96, 1674–1679 (1999)

    Article  Google Scholar 

  63. Invernizzi, R., Bramante, M., Samanin, R.: Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res. 260, 322–324 (1992)

    Article  Google Scholar 

  64. Iwata-Ichikawa, E., Kondo, Y., Miyazaki, I., Asanuma, M., Ogawa, N.: Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 72(6), 2334–2344 (1999)

    Article  Google Scholar 

  65. Jacobs, B.L., Fornal, C.A.: 5-ht and motor control: a hypothesis. TINS 16, 346–352 (1993)

    Google Scholar 

  66. Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., Hudspeth, A.: Principles of Neural Science, 5th edn. McGraw-Hill Education/Medical (2012)

    Google Scholar 

  67. Kannari, K., Tanaka, H., Maeda, T., Tomiyama, M., Suda, T., Matsunaga, M.: Reserpine pretreatment prevents increases in extracellular striatal dopamine following L-DOPA administration in rats with nigrostriatal denervation. J Neurochem 74, 263–269 (2000)

    Article  Google Scholar 

  68. Kegeles, L., Abi-Dargham, A., Frankle, W., Gil, R., Cooper, T., Slifstein, M., Hwang, D.R., Huang, Y., Haber, S., Laruelle, M.: Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch. Gen Psychiat. 67, 231–239 (2010)

    Article  Google Scholar 

  69. Knappskog, P., Flatmark, T., Mallet, J., Lüdecke, B., Bartholomé, K.: Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum. Mol. Genet. 4, 1209–1212 (1995)

    Article  Google Scholar 

  70. Knobelman, D.A., Hen, R., Lucki, I.: Genetic regulation of extracellular serotonin by 5-hydroxytryptamine\(_{1A}\) and 5-hydroxytryptamine\(_{1B}\) autoreceptors in different brain regions of the mouse. J. Pharmacol. Exp. Ther. 298, 1083–1091 (2001)

    Google Scholar 

  71. Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., Kreitzer, A.C.: Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature letters 466, 622–626 (2010)

    Article  Google Scholar 

  72. Kreiss, D.S., Lucki, I.: Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-HT measured in vivo. J. Pharmacol. Exper. Therap. 274, 866–876 (1995)

    Google Scholar 

  73. Lawley, S., Best, J., Reed, M.: Neurotransmitter concentrations in the presence of neural switching in one dimension. AIM’s J. (under revision) (2016)

    Google Scholar 

  74. Lemke, M.R.: Depressive symptoms in Parkinson’s disease. European Journal of Neurology 15(Suppl. 1), 21–25 (2008)

    Article  Google Scholar 

  75. Lincoln, C.M., Bello, J.A., Lui, Y.W.: Decoding the deep gray: A review of the anatomy, function, and imaging patterns affecting the basal ganglia. Neurographics 2, 92–102 (2012)

    Article  Google Scholar 

  76. Lindgren, H.S., Andersson, D.R., Lagerkvist, S., Nissbrandt, H., Cenci, M.A.: L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: temporal and quantitative relationship to the expression of dyskinesia. J. Neurochem. 112, 1465–1476 (2010)

    Article  Google Scholar 

  77. Malagie, I., Trillat, A.C., Jacquot, C., Gardier, A.M.: Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. Eur. J. Pharmacol. 286, 213–217 (1995)

    Article  Google Scholar 

  78. Mann, J.J.: Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21(2S), 99S–105S (1999)

    Article  Google Scholar 

  79. Miller, G., Madras, B.: Polymorphisms in the 3’-untranslated region of the human and monkey dopamine transporter genes effect reporter gene expression. Mol. Psychiat. 7, 44–55 (2002)

    Article  Google Scholar 

  80. Moncrieff, J., Kirsch, I.: Efficacy of antidepressants in adults. Brit. Med. J. 331, 155 (2005)

    Article  Google Scholar 

  81. Montague, P.R., Dolan, R.J., Friston, K.J., Dayan, P.: Compuational psychiatry. Trends in Cognitive Sciences 16(1), 72–80 (2012)

    Article  Google Scholar 

  82. Monti, J.M.: The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med. Rev. 14, 307–317 (2010)

    Article  Google Scholar 

  83. Moore, P., Landolt, H.P., Seifritz, E., Clark, C., Bhatti, T., Kelsoe, J., Rapaport, M., Gillim, C.: Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23(6), 601–622 (2000)

    Article  Google Scholar 

  84. Mouradian, M.M., Juncos, J.L., Fabbrini, G., Chase, T.N.: Motor fluctutations in Parkinson’s disease: pathogenetic and therapeutic studies. Annals of Neurology 22, 475–479 (1987)

    Article  Google Scholar 

  85. Mouradian, M.M., Juncos, J.L., Fabbrini, G., Schlegel, J., J.Bartko, J., Chase, T.N.: Motor fluctuations in Parkinson’s disease: Central pathophysiological mechanisms, part ii. Annals of Neurology 24, 372–378 (1988)

    Google Scholar 

  86. Navailles, S., Bioulac, B., Gross, C., Deurwaerdère, P.D.: Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol. Dis. 41, 585–590 (2011)

    Article  Google Scholar 

  87. Newman, E.L., Gupta, K., Climer, J.R., Monaghan, C.K., Hasselmo, M.E.: Cholinergic modulation of cognitive processing: insights drawn from computational models. Frontiers in Behavioral Neuroscience 6(24), 1–19 (2012)

    Google Scholar 

  88. Nicholson, S.L., Brotchie, J.M.: 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease - opportunities for novel therapeutics to reduce problems of levodopa therapy. European Journal of Neurology 9(Suppl. 3), 1–6 (2002)

    Article  Google Scholar 

  89. Nijhout, H.F., Best, J., Reed, M.: Escape from homeostasis. Mathematical Biosciences 257, 104–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. Pålhagen, S.E., Carlsson, M., Curman, E., Wålinder, J., Granérus, A.K.: Depressive illness in Parkinson’s disease – indication of a more advanced and widespread neurodegenerative process? Acta Neurol Scand 117, 295–304 (2008)

    Article  Google Scholar 

  91. Raymond, J.R., Mukhin, Y., Gelasco, A., Turner, J., Collinsworth, G., Gettys, T., Grewal, J., Garnovskaya, M.N.: Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmaco. Therap. 92, 179–212 (2001)

    Article  Google Scholar 

  92. Raz, A., Vaadia, E., Bergman, H.: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine vervet model of parkinsonism. J Neurosci. 20, 8559–8571 (2000)

    Google Scholar 

  93. Reed, M., Best, J., Nijhout, H.: Passive and active stabilization of dopamine in the striatum. BioScience Hypotheses 2, 240–244 (2009)

    Article  Google Scholar 

  94. Reed, M., Lieb, A., Nijhout, H.: The biological significance of substrate inhibition: a mechanism with diverse functions. BioEssays 32, 422–429 (2010)

    Article  Google Scholar 

  95. Reed, M., Nijhout, H.F., Best, J.: Mathematical insights into the effects of levodopa. Frontiers Integrative Neuroscience 6, 1–24 (2012)

    Article  Google Scholar 

  96. Reed, M., Nijhout, H.F., Best, J.: Computational studies of the role of serotonin in the basal ganglia. Frontiers Integrative Neuroscience 7, 1–8 (2013)

    Article  Google Scholar 

  97. Reed, M., Nijhout, H.F., Best, J.: Projecting biochemistry over long distances. Math. Model. Nat. Phenom. 9(1), 133–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  98. Reijnders, J.S.A.M., Ehrt, U., Weber, W.E.J., Aarsland, D., Leentjens, A.F.G.: A systematic review of prevalence studies of depression in Parkinson’s disease. Movement Disorders 23(2), 183–189 (2008)

    Article  Google Scholar 

  99. Royo, M., Daubner, S., Fitzpatrick, P.: Effects of mutations in tyrosine hydroxylase associated with progressive dystonia on the activity and stability of the protein. Proteins 58, 14–21 (2005)

    Article  Google Scholar 

  100. Rutter, J.J., Gundlah, C., Auerbach, S.B.: Increase in extracellular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci. Lett. 171, 183–186 (1994)

    Article  Google Scholar 

  101. Schildkraut, J.J.: The catecholamine hypothesis of affective disorders: a review of supporting evidence. Amer. J. Psych. 122, 509–522 (1965)

    Article  Google Scholar 

  102. Shepherd, G.M. (ed.): The Synaptic Organization of the Brain, 5th edn. Oxford U. Press, (2004)

    Google Scholar 

  103. Smith, Bevan, M., Shink, E., Bolam, J.P.: Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86, 353–387 (1998)

    Article  Google Scholar 

  104. Smith, D., Dempster, C., Glanville, J., Freemantle, N., Anderson, I.: Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Brit. J. Physchiatry 180, 396– (2002)

    Google Scholar 

  105. Smith, T., Kuczenski, R., George-Friedman, K., Malley, J.D., Foote, S.L.: In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration. Synapse 38, 460–470 (2000)

    Article  Google Scholar 

  106. Soghomonian, J.J., Doucet, G., Descarries, L.: Serotonin innervation in adult rat neostriatum i. quantified regional distribution. Brain Research 425, 85–100 (1987)

    Article  Google Scholar 

  107. Stancampiano, R., Melis, F., Sarais, L., Cocco, S., Cugusi, C., Fadda, F.: Acute administration of a tryptophan-free amino acid mixture decreases 5-HT release in rat hippocampus in vivo. Am. J. Physiol. 272, R991–R994 (1997)

    Google Scholar 

  108. Tanaka, H., Kannari, K., Maeda, T., Tomiyama, M., Suda, T., Matsunaga, M.: Role of serotonergic neurons in L-DOPA- derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. NeuroReport 10, 631–634 (1999)

    Article  Google Scholar 

  109. Tanda, G., Frau, R., Chiara, G.D.: Chronic desipramine and fluoxetine differentially affect extracellular dopamine in the rat pre-frontal cortex. Psychopharmacology 127, 83–87 (1996)

    Article  Google Scholar 

  110. Turner, E., Rosenthal, R.: Efficacy of antidepressants. Brit. Med. J. 336, 516–517 (2008)

    Article  Google Scholar 

  111. Vertes, R.P.: A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 313, 643–668 (1991)

    Article  Google Scholar 

  112. W., B.C., E., S.B., A., E.R.: Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 16(2), 187–197 (2012)

    Google Scholar 

  113. Wood, K.M., Zeqja, A., Nijhout, H.F., Reed, M.C., Best, J.A., Hashemi, P.: Voltammetric and mathematical evidence for dual transport mediation of serotonin clearance in vivo. J. Neurochem. 130, 351–359 (2014)

    Article  Google Scholar 

  114. Young, S.N., Smith, S.E., Pihl, R., Ervin, F.R.: Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87, 173–177 (1985)

    Article  Google Scholar 

  115. Zold, C.L., Kasanetz, F., Pomata, P.E., Belluscio, M.A., Escande, M.V., Galinanes, G.L., Riquelme, L.A., Murer, M.G.: Striatal gating through up states and oscillations in the basal ganglia: Implications for Parkinson’s disease. J. Physiol-Paris 106, 40–46 (2012)

    Article  Google Scholar 

  116. Zoli, M., Jansson, A., Syková, E., Agnati, L., Fuxe, K.: Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends in Pharmacological Sciences 20, 142–150 (1999)

    Article  Google Scholar 

  117. Zoli, M., Torri, C., Ferrari, R., Jansson, A., Zini, I., Fuxe, K., Agnati, L.: The emergence of the volume transmission concept. Brain Res. Rev. 28, 136–147 (1998)

    Article  Google Scholar 

  118. Zygmond, M., Abercrombie, E.D., Berger, T.W., Grace, A.A., Stricker, E.M.: Compensation after lesions of central dopaminergic neurons: some clinical and basic implications. TINS 13, 290–296 (1990)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Parry Hashemi for stimulating and useful discussions. This work was supported in part by NSF grant EF-1038593 (HFN, MCR), the Mathematical Biosciences Institute and the NSF under grant DMS-0931642 (JAB, MCR), and an NSF CAREER Award DMS-0956057 (JAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet A. Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Best, J.A., Frederik Nijhout, H., Reed, M.C. (2017). Mathematical Models of Neuromodulation and Implications for Neurology and Psychiatry. In: Érdi, P., Sen Bhattacharya, B., Cochran, A. (eds) Computational Neurology and Psychiatry. Springer Series in Bio-/Neuroinformatics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-49959-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49959-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49958-1

  • Online ISBN: 978-3-319-49959-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics