Advertisement

Educational and Research Systems for Evaluating the Efficiency of Parallel Computations

  • Victor GergelEmail author
  • Evgeny Kozinov
  • Alexey Linev
  • Anton Shtanyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10049)

Abstract

In this paper we consider the educational and research systems that can be used to estimate the efficiency of parallel computing. ParaLab allows parallel computation methods to be studies. With the ParaLib library, we can compare the parallel programming languages and technologies. The Globalizer Lab system is capable of estimating the efficiency of algorithms for solving computationally intensive global optimization problems. These systems can build models of various high-performance systems, formulate the problems to be solved, perform computational experiments in the simulation mode and analyze the results. The crucial matter is that the described systems support a visual representation of the parallel computation process. If combined, these systems can be useful for developing high-performance parallel programs which take the specific features of modern supercomputing systems into account.

Keywords

High-performance system Parallel computations Parallel algorithm Numerical experiment Simulation Parallel speedup Parallel efficiency 

References

  1. 1.
    A Survey on Training and Education Needs for Petascale Computing. http://www.prace-ri.eu/IMG/pdf/D3-3-1_document_final.pdf
  2. 2.
    Rague, B.: Teaching parallel thinking to the next generation of programmers. J. Educ. Inform. Cybern. 1(1), 43–48 (2009)Google Scholar
  3. 3.
    Voevodin, V., Gergel, V., Popova, N.: Challenges of a systematic approach to parallel computing and supercomputing education. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 90–101. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27308-2_8 CrossRefGoogle Scholar
  4. 4.
    Gergel, V., Liniov, A., Meyerov, I., Sysoyev, A.: NSF/IEEE-TCPP curriculum implementation at the State University of Nizhni Novgorod. In: IPDPSW 2014 Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, pp. 1079–1084. IEEE Computer Society, Washington, DC, USA (2014)Google Scholar
  5. 5.
    Kraemer, E., Stasko, J.T.: The visualization of parallel systems: an overview. J. Parallel Distrib. Comput. 18, 105–117 (1993)CrossRefGoogle Scholar
  6. 6.
    Hundhausen, C.D., Dougla, S.A., Stasko, J.T.: A meta-study of algorithm visualization effectiveness. J. Vis. Lang. Comput. 13(3), 259–290 (2002)CrossRefGoogle Scholar
  7. 7.
    Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á.: Towards the effective use of educational program animations: the roles of student’s engagement and topic complexity. Comput. Educ. 67, 178–192 (2013)CrossRefGoogle Scholar
  8. 8.
    Lazaridis, V., Samaras, N., Sifaleras, A.: An empirical study on factors influencing the effectiveness of algorithm visualization. Comput. Appl. Eng. Educ. 21, 410–420 (2013)CrossRefGoogle Scholar
  9. 9.
    Ben-Ari, M., Bednarik, R., Ben-Bassat, L.R., Ebel, G., Moreno, A., Myller, N., Sutinen, E.: A decade of research and development on program animation: the Jeliot experience. J. Vis. Lang. Comput. 22(5), 375–384 (2011)CrossRefGoogle Scholar
  10. 10.
    Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization systems for introductory programming education. ACM Trans. Comput. Educ. (TOCE) 13(4), 15 (2013)Google Scholar
  11. 11.
    Teaching with Data, Simulations and Models. Topical Resources. http://serc.carleton.edu/NAGTWorkshops/data_models/toolsheets/MATLAB.html
  12. 12.
    Gergel, V., Labutina, A.: The ParaLab system for investigating the parallel algorithms. In: Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 95–104. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14822-4_11 CrossRefGoogle Scholar
  13. 13.
    Kozinov, E., Shtanyuk, A.: Learning parallel computations with ParaLab. In: CEUR Workshop Proceedings, vol. 1513, pp. 11–20 (2015)Google Scholar
  14. 14.
    The ParaLab system website (2016). http://hpc-education.unn.ru/en/trainings/teachware/paralab. Accessed
  15. 15.
    Kozinov, E., Gergel, V., Line, A., Shtanyuk, A.: Educational and research systems for studying of parallel methods. In: CEUR Workshop Proceedings, vol. 1482, pp. 779–786 (2015). (in Russian)Google Scholar
  16. 16.
    The ParaLib Library website (2016). http://hpc-education.unn.ru/en/trainings/teachware/paralib. Accessed
  17. 17.
    Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Melon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San-Francisco (2000)Google Scholar
  18. 18.
    Group, W., Lusk, E., Skjellum, A.: Using MPI. Portable Parallel Programming with the Message-Passing Interface. MIT Press, Cambridge (1994)Google Scholar
  19. 19.
    Reid, J.: JKR Associates, UK Coarrays in the next Fortran Standard, 21 April 2010. ftp://ftp.nag.co.uk/sc22wg5/n1801-n1850/n1824.pdf
  20. 20.
    The Chapel Parallel Programming Language. http://chapel.cray.com/
  21. 21.
    The Globalizer Lab system website (2016). http://hpc-education.unn.ru/en/trainings/teachware/globlab. Accessed
  22. 22.
    Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. The Benjamin/Cummings Publishing Company, Inc., San Francisco (1994)zbMATHGoogle Scholar
  23. 23.
    Quinn, M.J.: Parallel Programming C with MPI and OpenMP. Mccraw-Hill, New York (2004)Google Scholar
  24. 24.
    Gergel, V.P.: Theory and Practice of Parallel Computations. Binom, Moscow (2007). (in Russian)Google Scholar
  25. 25.
    Strongin, R.G., Sergeyev, Ya.D: Global Optimization with Non-convex Constraints Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions. Comput. Math. Math. Phys. 36(6), 729–742 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization. Procedia Comput. Sci. 51, 865–874 (2015)CrossRefGoogle Scholar
  28. 28.
    Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66, 1–18 (2015). doi: 10.1007/s10898-016-0411-y MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lebedev, I., Gergel, V.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Victor Gergel
    • 1
    Email author
  • Evgeny Kozinov
    • 1
  • Alexey Linev
    • 1
  • Anton Shtanyk
    • 1
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations