Skip to main content

Eco-Innovations in Sustainable Waste Management Strategies for Smart Cities

  • Chapter
  • First Online:
Happy City - How to Plan and Create the Best Livable Area for the People

Part of the book series: EcoProduction ((ECOPROD))

Abstract

With waste management strategies constrained by strict laws and ecological requirements, new holistic approaches have attracted great interest. The main focus is now on converting organic wastes into renewable energy sources or “biosoils”. Biological waste disposal alternatives have a huge environmental potential, coming as a substitute for expensive, hazardous methods, such as landfillling or incineration. Their possible impact on the environment can be assessed from the ecological, economical and sociological point of view using decision-making tools, e.g., Life Cycle Assessment (LCA), which seek to identify the best practices for a sustainable development of smart cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdoli S (2009) RFID application in municipal solid waste management system. Int J Environ Res 3(3):447–454

    Google Scholar 

  2. Anagnostopoulos T et al (2015) Assessing dynamic models for high priority waste collection in smart cities. J Syst Softw 110:178–192

    Article  Google Scholar 

  3. Arnold M. et al (2015) D2. 1 Regulatory and integrative aspects in smart cities. BlueSCities Report

    Google Scholar 

  4. Azizi AB et al (2013) Vermiremoval of heavy metal in sewage sludge by utilising lumbricus rubellus. Ecotoxicol Environ Saf 90:13–20. doi:10.1016/j.ecoenv.2012.12.006

    Article  CAS  Google Scholar 

  5. Bakıcı T et al (2013) A smart city initiative: the case of Barcelona. J Knowl Econ 4(2):135–148. doi:10.1007/s13132-012-0084-9

    Article  Google Scholar 

  6. Bhatnagar A et al (2016) Multidisciplinary approaches to handling wastes in sugar industries. Water Air Soil Pollut 227(1):1–30. doi:10.1007/s11270-015-2705-y

    Article  CAS  Google Scholar 

  7. Bień J (2007) Sewage sludge–theory and practice. Wyd. Politech. Częstoch, Częstochowa, p 289

    Google Scholar 

  8. Bień J et al (2011) Kierunki zagospodarowania osadów w Polsce po roku 2013. Inżynieria i Ochrona Środowiska 14:375–384

    Google Scholar 

  9. Bjarnadóttir HJ et al (2002) Guidelines for the use of LCA in the waste management sector. Nordtest, Finland

    Google Scholar 

  10. Boden TA et al (2016) Global, regional, and national fossil-fuel co2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, U.S.A

    Google Scholar 

  11. Broun R, Sattler M (2016) A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. J Cleaner Prod 112 Part 4:2664–2673. doi:10.1016/j.jclepro.2015.10.010

    Article  Google Scholar 

  12. Brunner D et al (1970) Sanitary landfill guidelines-1970. US Department of Health, Education and Welfare, Bureau of Solid Waste Management

    Google Scholar 

  13. Brunner PH, Rechberger H (2015) Waste to energy–key element for sustainable waste management. Waste Manag 37:3–12. doi:10.1016/j.wasman.2014.02.003

    Article  CAS  Google Scholar 

  14. Butt KR (1993) Utilisation of solid paper-mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms. Bioresour Technol 44(2):105–107. doi:10.1016/0960-8524(93)90182-B

    Article  CAS  Google Scholar 

  15. Chan YC et al (2010) Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manage Res. doi:10.1177/0734242X10375587

    Google Scholar 

  16. Cherubini F et al (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123. doi:10.1016/j.energy.2008.08.023

    Article  CAS  Google Scholar 

  17. Commission E (2008) Directive 2008/98/EC of the european parliament and of the council of 19 november 2008 on waste and repealing certain directives (Waste framework directive, R1 formula in footnote of attachment II): http://eur-lex.europa.eu/LexUriServ“. LexUriServ. do

  18. De Feo G, Malvano C (2009) The use of LCA in selecting the best MSW management system. Waste Manag 29(6):1901–1915. doi:10.1016/j.wasman.2008.12.021

    Article  Google Scholar 

  19. Directive A (1994) 94/62/EC on packaging and packaging waste. Available on the Internet: http://europa.eu.int/scadplus/leg/en/lvb/l21207.htm. Cited 10:02-05

  20. Directive C (1986) Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Offic J Eur Comm 181:0006–0012

    Google Scholar 

  21. Directive C (1999) 31/EC of 26 April 1999 on the landfill of waste. Official journal L 182(16):07

    Google Scholar 

  22. Directive E. W. I (2000) Directive 2000/76/EC of the European Parliament and of the Council on Incineration of Waste. European Commission, Brussels

    Google Scholar 

  23. Directive U. W. W. T (1991) Council Directive 91/271/EEC concerning urban wastewater treatment. OJ L 135

    Google Scholar 

  24. Dorado AD et al (2014) Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility. Waste Manag 34(2):344–351

    Article  CAS  Google Scholar 

  25. EIO (2016) http://www.ecoinnovation.eu. Accessed 4 July 2016

  26. EPA US (2014) Climate change indicators in the United States, 2014. Third edition. EPA 430-R-14-004

    Google Scholar 

  27. Fijalkowski K et al (2014) Occurrence changes of Escherichia coli (including O157: H7 serotype) in wastewater and sewage sludge by quantitation method of (EMA) real time—PCR. Desalin Water Treat 52(19–21):3965–3972

    Article  CAS  Google Scholar 

  28. Friedrich E, Trois C (2013) GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities. Waste Manag 33(11):2520–2531. doi:10.1016/j.wasman.2013.05.010

    Article  Google Scholar 

  29. Grosser A, Neczaj E Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers Manag. doi:10.1016/j.enconman.2016.05.089

  30. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management

    Google Scholar 

  31. Kacprzak M et al (2015) Escherichia coli and Salmonella spp. Early diagnosis and seasonal monitoring in the sewage treatment process by EMA-qPCR method. Pol J Microbiol 64(2):143–148

    Google Scholar 

  32. Kaliampakos D, Benardos A (2012) Underground solutions for urban waste management: status and perspectives. National Technical University of Athens Lab of Mining and Environmental Technology

    Google Scholar 

  33. Lawrence M, Woods E (2014) Smart waste. advanced collection, processing, energy recovery, and disposal technologies for the municipal solid waste value chain: global market analysis and forecasts”. In Navigant Research

    Google Scholar 

  34. Lim SL et al (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Cleaner Prod 111, Part A:262–278. doi:10.1016/j.jclepro.2015.08.083

  35. Luth et al (2011) Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresour Technol 102(4):3679–3686. doi:10.1016/j.biortech.2010.11.027

    Article  CAS  Google Scholar 

  36. Marchal V et al (2011) OECD environmental outlook to 2050. Organization for Economic Co-operation and Development

    Google Scholar 

  37. Mendes MR et al (2004) Comparison of the environmental impact of incineration and landfilling in São Paulo City as determined by LCA. Resour Conserv Recycl 41(1):47–63. doi:10.1016/j.resconrec.2003.08.003

    Article  Google Scholar 

  38. Muchová L, Eder P (2010) End-of-waste criteria for aluminium and aluminium alloy scrap: technical proposals. Publications Office of the European Union, Luxembourg, Institute for Prospective Technological Studies, p 66

    Google Scholar 

  39. OECD (2009) Sustainable manufacturing and eco-innovation: towards a green economy. Accessed 3 July 2016

    Google Scholar 

  40. Placek A et al (2016) Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytorem 18(6):605–618. doi:10.1080/15226514.2015.1086308

    Article  CAS  Google Scholar 

  41. Ramaswami A et al (2016) Meta-principles for developing smart, sustainable, and healthy cities. Science 352(6288):940–943. doi:10.1126/science.aaf7160

    Article  CAS  Google Scholar 

  42. Rapport J et al (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste. University of California, Davis, Contractor Report to the California Integrated Waste Management Board

    Google Scholar 

  43. Rorat A et al (2015) Interactions between sewage sludge-amended soil and earthworms—comparison between Eisenia fetida and Eisenia andrei composting species. Environ Sci Pollut Res :1–10. doi:10.1007/s11356-015-5635-8

  44. Saveyn H, Eder P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Publications Office of the European Union, Luxembourg

    Google Scholar 

  45. Seto KC et al (2014) Human settlements, infrastructure and spatial planning

    Google Scholar 

  46. Slagstad H, Brattebø H (2012) LCA for household waste management when planning a new urban settlement. Waste Manag 32(7):1482–1490. doi:10.1016/j.wasman.2012.03.018

    Article  Google Scholar 

  47. Soyez K, Plickert S (2002) Mechanical-biological pre-treatment of waste: state of the art and potentials of biotechnology. Acta Biotechnol 22:3–4. doi:10.1002/1521-3846, (200207)22:3/4<271:AID-ABIO271>3.0.CO;2-I

    Article  Google Scholar 

  48. Styka W, Beńko P (2014) Wdrażanie dobrych praktyk w gospodarce osadami ściekowymi. Inżynieria i Ochrona Środowiska 17(2):165–184

    Google Scholar 

  49. Suthar S, Singh S (2008) Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int J Environ Sci Technol 5(1):99–106. doi:10.1007/BF03326002

    Article  CAS  Google Scholar 

  50. Swilling M et al (2013) City-level decoupling: urban resource flows and the governance of infrastructure transitions. United Nations Environment Programme

    Google Scholar 

  51. Tampio E et al (2016) Agronomic characteristics of five different urban waste digestates. J Environ Manage 169:293–302. doi:10.1016/j.jenvman.2016.01.001

    Article  CAS  Google Scholar 

  52. Wang L et al (2009) Vermicomposting Process. In: Wang LawrenceK, Pereira NormanC, Hung Yung-Tse (eds) Biological treatment processes. Humana Press, Handbook of Environmental Engineering, pp 715–732

    Chapter  Google Scholar 

  53. Wickham R et al Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int Biodeterior Biodegradation. doi:10.1016/j.ibiod.2016.03.018

  54. Worwąg G et al 2012 “Mechaniczno-biologiczne metody przetwarzania odpadów komunalnych-perspektywy rozwoju. In Gospodarka Odpadami Komunalnymi”, ed. Wydawnictwo Uczelniane Politechniki Koszalińskiej, 403–418. Koszalin

    Google Scholar 

  55. Yadav KD et al (2010) Vermicomposting of source-separated human faeces for nutrient recycling. Waste Manag 30(1):50–56. doi:10.1016/j.wasman.2009.09.034

    Article  CAS  Google Scholar 

  56. Yano J, Sakai S-I (2016) Waste prevention indicators and their implications from a life cycle perspective: a review. J Mater Cycles Waste Manage 18(1):38–56. doi:10.1007/s10163-015-0406-7

    Article  Google Scholar 

  57. Zorpas AA (2016) Sustainable waste management through end-of-waste criteria development. Environ Sci Pollut Res 23(8):7376–7389. doi:10.1007/s11356-015-5990-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No (POL NOR/201734/76).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Rorat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rorat, A., Kacprzak, M. (2017). Eco-Innovations in Sustainable Waste Management Strategies for Smart Cities. In: Brdulak, A., Brdulak, H. (eds) Happy City - How to Plan and Create the Best Livable Area for the People. EcoProduction. Springer, Cham. https://doi.org/10.1007/978-3-319-49899-7_13

Download citation

Publish with us

Policies and ethics