Eco-Innovations in Sustainable Waste Management Strategies for Smart Cities

Chapter

Abstract

With waste management strategies constrained by strict laws and ecological requirements, new holistic approaches have attracted great interest. The main focus is now on converting organic wastes into renewable energy sources or “biosoils”. Biological waste disposal alternatives have a huge environmental potential, coming as a substitute for expensive, hazardous methods, such as landfillling or incineration. Their possible impact on the environment can be assessed from the ecological, economical and sociological point of view using decision-making tools, e.g., Life Cycle Assessment (LCA), which seek to identify the best practices for a sustainable development of smart cities.

Keywords

Waste management Bio wastes Renewable energy Life cycle assessment Eco-innovations 

References

  1. 1.
    Abdoli S (2009) RFID application in municipal solid waste management system. Int J Environ Res 3(3):447–454Google Scholar
  2. 2.
    Anagnostopoulos T et al (2015) Assessing dynamic models for high priority waste collection in smart cities. J Syst Softw 110:178–192CrossRefGoogle Scholar
  3. 3.
    Arnold M. et al (2015) D2. 1 Regulatory and integrative aspects in smart cities. BlueSCities ReportGoogle Scholar
  4. 4.
    Azizi AB et al (2013) Vermiremoval of heavy metal in sewage sludge by utilising lumbricus rubellus. Ecotoxicol Environ Saf 90:13–20. doi:10.1016/j.ecoenv.2012.12.006 CrossRefGoogle Scholar
  5. 5.
    Bakıcı T et al (2013) A smart city initiative: the case of Barcelona. J Knowl Econ 4(2):135–148. doi:10.1007/s13132-012-0084-9 CrossRefGoogle Scholar
  6. 6.
    Bhatnagar A et al (2016) Multidisciplinary approaches to handling wastes in sugar industries. Water Air Soil Pollut 227(1):1–30. doi:10.1007/s11270-015-2705-y CrossRefGoogle Scholar
  7. 7.
    Bień J (2007) Sewage sludge–theory and practice. Wyd. Politech. Częstoch, Częstochowa, p 289Google Scholar
  8. 8.
    Bień J et al (2011) Kierunki zagospodarowania osadów w Polsce po roku 2013. Inżynieria i Ochrona Środowiska 14:375–384Google Scholar
  9. 9.
    Bjarnadóttir HJ et al (2002) Guidelines for the use of LCA in the waste management sector. Nordtest, FinlandGoogle Scholar
  10. 10.
    Boden TA et al (2016) Global, regional, and national fossil-fuel co2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, U.S.AGoogle Scholar
  11. 11.
    Broun R, Sattler M (2016) A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. J Cleaner Prod 112 Part 4:2664–2673. doi:10.1016/j.jclepro.2015.10.010 CrossRefGoogle Scholar
  12. 12.
    Brunner D et al (1970) Sanitary landfill guidelines-1970. US Department of Health, Education and Welfare, Bureau of Solid Waste ManagementGoogle Scholar
  13. 13.
    Brunner PH, Rechberger H (2015) Waste to energy–key element for sustainable waste management. Waste Manag 37:3–12. doi:10.1016/j.wasman.2014.02.003 CrossRefGoogle Scholar
  14. 14.
    Butt KR (1993) Utilisation of solid paper-mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms. Bioresour Technol 44(2):105–107. doi:10.1016/0960-8524(93)90182-B CrossRefGoogle Scholar
  15. 15.
    Chan YC et al (2010) Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manage Res. doi:10.1177/0734242X10375587 Google Scholar
  16. 16.
    Cherubini F et al (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123. doi:10.1016/j.energy.2008.08.023 CrossRefGoogle Scholar
  17. 17.
    Commission E (2008) Directive 2008/98/EC of the european parliament and of the council of 19 november 2008 on waste and repealing certain directives (Waste framework directive, R1 formula in footnote of attachment II): http://eur-lex.europa.eu/LexUriServ“. LexUriServ. do
  18. 18.
    De Feo G, Malvano C (2009) The use of LCA in selecting the best MSW management system. Waste Manag 29(6):1901–1915. doi:10.1016/j.wasman.2008.12.021 CrossRefGoogle Scholar
  19. 19.
    Directive A (1994) 94/62/EC on packaging and packaging waste. Available on the Internet: http://europa.eu.int/scadplus/leg/en/lvb/l21207.htm. Cited 10:02-05
  20. 20.
    Directive C (1986) Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Offic J Eur Comm 181:0006–0012Google Scholar
  21. 21.
    Directive C (1999) 31/EC of 26 April 1999 on the landfill of waste. Official journal L 182(16):07Google Scholar
  22. 22.
    Directive E. W. I (2000) Directive 2000/76/EC of the European Parliament and of the Council on Incineration of Waste. European Commission, BrusselsGoogle Scholar
  23. 23.
    Directive U. W. W. T (1991) Council Directive 91/271/EEC concerning urban wastewater treatment. OJ L 135Google Scholar
  24. 24.
    Dorado AD et al (2014) Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility. Waste Manag 34(2):344–351CrossRefGoogle Scholar
  25. 25.
    EIO (2016) http://www.ecoinnovation.eu. Accessed 4 July 2016
  26. 26.
    EPA US (2014) Climate change indicators in the United States, 2014. Third edition. EPA 430-R-14-004Google Scholar
  27. 27.
    Fijalkowski K et al (2014) Occurrence changes of Escherichia coli (including O157: H7 serotype) in wastewater and sewage sludge by quantitation method of (EMA) real time—PCR. Desalin Water Treat 52(19–21):3965–3972CrossRefGoogle Scholar
  28. 28.
    Friedrich E, Trois C (2013) GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities. Waste Manag 33(11):2520–2531. doi:10.1016/j.wasman.2013.05.010 CrossRefGoogle Scholar
  29. 29.
    Grosser A, Neczaj E Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers Manag. doi:10.1016/j.enconman.2016.05.089
  30. 30.
    Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste managementGoogle Scholar
  31. 31.
    Kacprzak M et al (2015) Escherichia coli and Salmonella spp. Early diagnosis and seasonal monitoring in the sewage treatment process by EMA-qPCR method. Pol J Microbiol 64(2):143–148Google Scholar
  32. 32.
    Kaliampakos D, Benardos A (2012) Underground solutions for urban waste management: status and perspectives. National Technical University of Athens Lab of Mining and Environmental TechnologyGoogle Scholar
  33. 33.
    Lawrence M, Woods E (2014) Smart waste. advanced collection, processing, energy recovery, and disposal technologies for the municipal solid waste value chain: global market analysis and forecasts”. In Navigant ResearchGoogle Scholar
  34. 34.
    Lim SL et al (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Cleaner Prod 111, Part A:262–278. doi:10.1016/j.jclepro.2015.08.083
  35. 35.
    Luth et al (2011) Earthworm effects on gaseous emissions during vermifiltration of pig fresh slurry. Bioresour Technol 102(4):3679–3686. doi:10.1016/j.biortech.2010.11.027 CrossRefGoogle Scholar
  36. 36.
    Marchal V et al (2011) OECD environmental outlook to 2050. Organization for Economic Co-operation and DevelopmentGoogle Scholar
  37. 37.
    Mendes MR et al (2004) Comparison of the environmental impact of incineration and landfilling in São Paulo City as determined by LCA. Resour Conserv Recycl 41(1):47–63. doi:10.1016/j.resconrec.2003.08.003 CrossRefGoogle Scholar
  38. 38.
    Muchová L, Eder P (2010) End-of-waste criteria for aluminium and aluminium alloy scrap: technical proposals. Publications Office of the European Union, Luxembourg, Institute for Prospective Technological Studies, p 66Google Scholar
  39. 39.
    OECD (2009) Sustainable manufacturing and eco-innovation: towards a green economy. Accessed 3 July 2016Google Scholar
  40. 40.
    Placek A et al (2016) Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytorem 18(6):605–618. doi:10.1080/15226514.2015.1086308 CrossRefGoogle Scholar
  41. 41.
    Ramaswami A et al (2016) Meta-principles for developing smart, sustainable, and healthy cities. Science 352(6288):940–943. doi:10.1126/science.aaf7160 CrossRefGoogle Scholar
  42. 42.
    Rapport J et al (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste. University of California, Davis, Contractor Report to the California Integrated Waste Management BoardGoogle Scholar
  43. 43.
    Rorat A et al (2015) Interactions between sewage sludge-amended soil and earthworms—comparison between Eisenia fetida and Eisenia andrei composting species. Environ Sci Pollut Res :1–10. doi:10.1007/s11356-015-5635-8
  44. 44.
    Saveyn H, Eder P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): technical proposals. Publications Office of the European Union, LuxembourgGoogle Scholar
  45. 45.
    Seto KC et al (2014) Human settlements, infrastructure and spatial planningGoogle Scholar
  46. 46.
    Slagstad H, Brattebø H (2012) LCA for household waste management when planning a new urban settlement. Waste Manag 32(7):1482–1490. doi:10.1016/j.wasman.2012.03.018 CrossRefGoogle Scholar
  47. 47.
    Soyez K, Plickert S (2002) Mechanical-biological pre-treatment of waste: state of the art and potentials of biotechnology. Acta Biotechnol 22:3–4. doi:10.1002/1521-3846, (200207)22:3/4<271:AID-ABIO271>3.0.CO;2-ICrossRefGoogle Scholar
  48. 48.
    Styka W, Beńko P (2014) Wdrażanie dobrych praktyk w gospodarce osadami ściekowymi. Inżynieria i Ochrona Środowiska 17(2):165–184Google Scholar
  49. 49.
    Suthar S, Singh S (2008) Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int J Environ Sci Technol 5(1):99–106. doi:10.1007/BF03326002 CrossRefGoogle Scholar
  50. 50.
    Swilling M et al (2013) City-level decoupling: urban resource flows and the governance of infrastructure transitions. United Nations Environment ProgrammeGoogle Scholar
  51. 51.
    Tampio E et al (2016) Agronomic characteristics of five different urban waste digestates. J Environ Manage 169:293–302. doi:10.1016/j.jenvman.2016.01.001 CrossRefGoogle Scholar
  52. 52.
    Wang L et al (2009) Vermicomposting Process. In: Wang LawrenceK, Pereira NormanC, Hung Yung-Tse (eds) Biological treatment processes. Humana Press, Handbook of Environmental Engineering, pp 715–732CrossRefGoogle Scholar
  53. 53.
    Wickham R et al Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int Biodeterior Biodegradation. doi:10.1016/j.ibiod.2016.03.018
  54. 54.
    Worwąg G et al 2012 “Mechaniczno-biologiczne metody przetwarzania odpadów komunalnych-perspektywy rozwoju. In Gospodarka Odpadami Komunalnymi”, ed. Wydawnictwo Uczelniane Politechniki Koszalińskiej, 403–418. KoszalinGoogle Scholar
  55. 55.
    Yadav KD et al (2010) Vermicomposting of source-separated human faeces for nutrient recycling. Waste Manag 30(1):50–56. doi:10.1016/j.wasman.2009.09.034 CrossRefGoogle Scholar
  56. 56.
    Yano J, Sakai S-I (2016) Waste prevention indicators and their implications from a life cycle perspective: a review. J Mater Cycles Waste Manage 18(1):38–56. doi:10.1007/s10163-015-0406-7 CrossRefGoogle Scholar
  57. 57.
    Zorpas AA (2016) Sustainable waste management through end-of-waste criteria development. Environ Sci Pollut Res 23(8):7376–7389. doi:10.1007/s11356-015-5990-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Environmental EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations