Constraints of Radiocarbon Dating in Southeastern Baltic Lagoons: Assessing the Vital Effects

  • Albertas BitinasEmail author
  • Jonas Mažeika
  • Ilya V. Buynevich
  • Aldona Damušytė
  • Anatoly Molodkov
  • Alma Grigienė
Part of the Coastal Research Library book series (COASTALRL, volume 19)


During the past decades, a suite of radiocarbon (14C), infrared optically stimulated luminescence (IR-OSL), and electron spin resonance (ESR) dates were compiled on a variety of materials from the Curonian and Vistula lagoons and spits of the southeastern Baltic Sea. These dated materials generally included lagoon sediments and mollusc shells, along with samples of fossil fish remains, peat, wood, and water bicarbonates. A growing number of 14C dates (conventional and AMS) demonstrates disparities and contradictions with the associated IR-OSL dates and palaeobotanical investigations of contemporary materials. Detailed analyses of 14C, IR-OSL and ESR chronologies and experimental 14C dating of modern live molluscs and water bicarbonates from the Curonian Lagoon and its main tributary – Nemunas-Neris River system – reveals a substantial influx of “old” carbonates into the lagoon. As a result, the uncertainty of reservoir effect added a considerable error to the 14C ages. Moreover, fossil molluscs of the same species extracted from boreholes and outcrops yield significantly younger ages (up to several millennia) than the enclosing sediments. Both of these trends – aging and rejuvenation – highlight an urgent need for constraining the local reservoir correction (ΔR). Several scenarios are presented to explain the impact of vital effects on radiocarbon chronology of carbonates and to offer strategies to account for them in future studies.


Curonian lagoon Vistula lagoon Molluscs Radiocarbon IR-OSL ESR Reservoir effect 



This study was supported by the Research Council of Lithuania (grant No. LEK-10005), Klaipėda University (grant of the national project “Lithuanian Maritime Sectors’ Technologies and Environmental Research Development” No. VP1-3.1-ŠMM-08-K-01-019), and by the Ocean and Climate Change Institute (WHOI), USA. The authors cordially thank the Curonian Spit National Park administration for access to study sites, and Donatas Pupienis (Vilnius University) and Anton Symonovich (Lithuanian Geological Survey) for assistance in the field. The authors are grateful to Gösta Hoffmann for critical remarks that allowed greatly improve the manuscript.


  1. Arslanov KhA (1985) Radiocarbon: geochemistry and geochronology. Leningrad (In Russian)Google Scholar
  2. Bitinas A, Damušytė A, Hütt G, Jaek I, Kabailienė M (2001) Application of the OSL dating to stratigraphic correlation of Late Wechselian and Holocene sediments in the Lithuanian Maritime region. Quat Sci Rev 21:767–772CrossRefGoogle Scholar
  3. Bitinas A, Boldyrev V, Damušytė A, Grigienė A, Vaikutienė G, Žaromskis R (2008) Lagoon sediments in the central part of the vistula spit: geochronology, sedimentary environment and peculiarities of geological settings. Pol Geol Inst Spec Pap 23:9–20Google Scholar
  4. Bitinas A, Damušytė A, Molodkov A (2011) Geological structure of the quaternary sedimentary sequence in the Klaipėda strait, Southeastern Baltic. In: Harff J et al (eds) The Baltic sea basin, Central and Eastern European Development Studies (CEEDES). Springer, Berlin/Heidelberg, pp 33–146Google Scholar
  5. Bronk Ramsey C, Dee M, Lee S, Nakagawa T, Staff RA (2010) Developments in the calibration and modelling of radiocarbon dates. Radiocarbon 52(3):953–961CrossRefGoogle Scholar
  6. Busschers FS, Kars RH, Wallinga J, Wesselingh F, Bosch A, Timmner J, Versluijs-Helder M, Klaver G, Meijer T, Bunnik F, De Wolf H (2012) Radiocarbon ghostdates from southern North Sea marine shells. Quat Int 76:279–280Google Scholar
  7. Buynevich IV, Bitinas A, Damušytė A, Pupienis D (2010) Unique Baltic outcrops reveal millennia of ecological changes. EOS Trans Am Geophys Union 91(11):101–102CrossRefGoogle Scholar
  8. Buynevich IV, Damušytė A, Bitinas A, Olenin S, Mažeika J, Petrošius R (2011) Pontic-Baltic pathways for invasive aquatic species: geoarchaeological implications. In: Buynevich IV, Yanko-Hombach V, Gilbert A, Martin RE (eds) Geology and Geoarchaeology of the Black sea region: beyond the flood hypothesis, Special paper 473. Geological Society of America, Boulder, pp 189–196CrossRefGoogle Scholar
  9. Damušytė A (2009) Late glacial and Holocene subfossil mollusc shells on the Lithuanian Baltic coast. Baltica 22:111–122Google Scholar
  10. Damušytė A (2011) Post-glacial geological history of the Lithuanian coastal area. Summary of doctoral dissertation, Physical sciences, geology (05P), VilniusGoogle Scholar
  11. Erdtman G (1960) The acetolysis method. Sven Bot Tidskr 54:561–564Google Scholar
  12. Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, New York, p 328Google Scholar
  13. Fischer A, Heinemeier J (2003) Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45:449–466CrossRefGoogle Scholar
  14. Galkus A (2007) Specific fresh and saline water circulation patterns in the Klaipėda Strait and Northern part of Curonian lagoon. Ann Geogr 40(1):3–16 (In Lithuanian)Google Scholar
  15. Gelumbauskaitė LŽ (2002) Holocene history on the Northern part of the Kuršių Marios (Curonian) lagoon. Baltica 15:3–12Google Scholar
  16. Grichuk VP, Zaklinskaya ED (1948) Analysis of the fossil pollen and spores and application of this method in palaeogeography. Geografgiz, Moskva, p 223 (in Russian)Google Scholar
  17. Grigelis A, Kadūnas V (eds) (1994) The geology of Lithuania. A Monograph. Mokslo ir enciklopedijų leidykla, Vilnius, p 447 [in Lithuanian: Lietuvos geologija]Google Scholar
  18. Grimm EC (1990) TILIA and TILIA GRAPH: PC spreadsheet and graphics software for pollen data. INQUA Comm Stud Holocene Work Group Data-Handling Methods Newslett 4:5–7Google Scholar
  19. Grimm EC (1992) Tilia and Tilia-graph: pollen spreadsheet and graphic programs. Programs and Abstracts, 8th International Palynological Congress, Aix-en-Provence, September 6–12, p 56Google Scholar
  20. Gudelis V (1989–1990) Lithology of old parabolic dunes of the Curonian Spit and the coastal dynamics of the late Litorina sea. Geogr Yearb 25–26:13–17 (In Lithuanian)Google Scholar
  21. Gudelis V (1997) Litorina maximum transgression on the Southeast coast of the Baltic sea. Baltica 10:5–8Google Scholar
  22. Gudelis V (1998) A catastrophic dune forest fire on the Kuršių Nerija spit (Lithuanian Coast) and its impact on the coastal population in the late neolithic time. Pact 54:45–50Google Scholar
  23. Gupta SH, Polach HA (1985) Radiocarbon practices at ANU, handbook. Australian National University, CanberraGoogle Scholar
  24. Gusev EA, Kostin DA, Rekant PV (2012) Problems of genetic identification of Barents-Kara shelf quaternary deposits (new results from state geological mapping of Russia in 1 000 000 scale). Otechestvennaja geologija 2:84–89Google Scholar
  25. Jeglinski W, Miotk-Szpiganowicz G, Uscinowicz Sz, Bogaczewicz-Adamczak B, Dziengo M, Bejrowska K (2012) Fossil lagoonal sediments on the Western coast of the Gulf of Gdansk – A new data on processes forming coastal terrace in the Late Holocene. In: Virtasalo J, Vallius H (eds) Abstract book 11th colloquium on Baltic sea marine geology, Helsinki, 19–21 September 2012, pp 26–27Google Scholar
  26. Kabailienė M (1995) Lagoon marl exposures at Nida. In: Kabailienė M (ed) Natural environment, man and cultural history on the coastal areas of Lithuania: excursion guidebook of the NorFa course in the Baltic countries, Vilnius, September 20–22, 1995, pp 40–43Google Scholar
  27. Kabailienė M (1997) Lagoon marl (clayey gyttja) exposure at the Kuršių Nerija spit. In: Grigelis A (ed) The fifth marine geological conference “The Baltic”, October 6–11, 1997, Vilnius, Lithuanian Institute of Geology; Abstracts, Excursion guide, pp 143–148Google Scholar
  28. Kabailienė M (2006) Gamtinės aplinkos raida Lietuvoje per 14 000 metų. Vilniaus universiteto leidykla, Vilnius, pp 471 (In Lithuanian)Google Scholar
  29. Kaminskas D, Bitinas A (2013) Rare earth elements of Holocene sediments in the South-Eastern Baltic region (Nida VI borehole, Lithuania). Geologija 55(1(81)):1–7Google Scholar
  30. Karatayev AY, Burlakova LE, Padilla DK (1997) The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J Shellfish Res 16:187–203Google Scholar
  31. Kovaliukh NN, Skripkin VV (1994) An universal technology for oxidation of carbon-containing materials for radiocarbon dating. In: Abstracts and papers of conference on geochronology and dendrochronology of old town’s and radiocarbon dating of archaeological findings. Vilnius, Lithuania, 31 October–4 November. Vilnius University Press, pp 37–42Google Scholar
  32. Krapivner RB (2006) Rapid aagging of the barents shelf over the last 15–16 ka. Geotektonika 3:39–51 (In Russian)Google Scholar
  33. Linčius A (1993) The secret of the lagoon marl. Geologijos akiračiai 1(9):29–33 (In Lithuanian)Google Scholar
  34. Lougheed BC, Filipsson HL, Snowball I (2013) Large spatial variations in coastal 14C reservoir age – A case study from the Baltic sea. Clim Past 9:1015–1028CrossRefGoogle Scholar
  35. Mažeika J, Skuratovič Ž, Garbaras A, Martma T (2010) Variations of stabile isotopes in the resent sediments of the Curonian lagoon. In: Jūros ir krantų tyrimai – 2010, konferencijos medžiaga, Palanga, 2009, balandžio 13–16, pp 122–123 (In Lithuanian)Google Scholar
  36. Molodkov A (1993) ESR-dating of non-marine mollusc shells. Appl Radiat Isot 43:145–148CrossRefGoogle Scholar
  37. Molodkov A (2001) ESR dating evidence for early man at a Lower Palaeolithic cave-site in the Northern Caucasus as derived from terrestrial mollusc shells. Quat Sci Rev 20:1051–1055CrossRefGoogle Scholar
  38. Molodkov A (2012) Cross-check of the dating results obtained by ESR and IR-OSL methods: implication for the Pleistocene palaeoenvironmental reconstructions. Quat Geochronol 10:188–194CrossRefGoogle Scholar
  39. Molodkov A, Bitinas A (2006) Sedimentary record and luminescence chronology of the Lateglacial and Holocene aeolian sediments in Lithuania. Boreas 35(2):244–254CrossRefGoogle Scholar
  40. Molodkov A, Bolikhovskaya N (2009) Climate change dynamics in Northern Eurasia over the last 200 ka: evidence from mollusc-based ESR-chronostratigraphy and vegetation successions of the loess–palaeosol records. Quat Int 201:67–76CrossRefGoogle Scholar
  41. Molodkov A, Dreimanis A, Āboltiņš O, Raukas A (1998) The ESR age of Portlandia arctica shells from glacial deposits of Central Latvia. Quat Sci Rev 17:1077–1094CrossRefGoogle Scholar
  42. Molodkov A, Bitinas A, Damušytė A (2010) IR-OSL dating studies of glacigenic sediments from the Lithuanian Maritime Region. Quat Geochronol 5:263–268CrossRefGoogle Scholar
  43. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford, p 216Google Scholar
  44. Olenin S, Orlova M, Minchin D (1999) Dreissena polymorpha (Pallas, 1771). In: Gollasch S, Minchin D, Rosenthal H, Voigt M (eds) Case histories on introduced species: their general biology, distribution, range expansion and impact. Logos, Berlin, pp 37–42Google Scholar
  45. Petersen KS, Rasmussen KL, Heinemeier J, Rud N (1992) Clams before Columbus? Nature 359:679CrossRefGoogle Scholar
  46. Philippsen B (2013) The freshwater reservoir effect in radiocarbon dating. Herit Sci 1:24CrossRefGoogle Scholar
  47. Piličiauskas G, Heron C (2015) Aquatic radiocarbon reservoir offsets in the Southeastern Baltic. Radiocarbon 57(4). doi: 10.2458/azu_rc.57.18447
  48. Pimenov NV, Ul’yanova MO, Kanapatskii TA, Mitskevich IN, Rusanov II, Sigalevich PA, Nemirovskaya IA, Sivkov VV (2013) Sulphate reduction, methanogenesis, and methane oxidation in the upper sediments of the vistula and Curonian lagoons. Baltic Sea Mikrobiologiya 82(2):228–238Google Scholar
  49. Pustelnikovas O (1998) Geochemistry of sediments of the Curonian lagoon. Institute of Geography, Vilnius, p 236Google Scholar
  50. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatta C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon 55(4). doi: 10.2458/azu_js_rc.55.16947
  51. Sergeev A, Sivkov V, Zhamoida V, Ryabchuk D, Bitinas A, Mažeika J (2015) Holocene organic-rich sediments within the Curonian spit coast, the South-Eastern Baltic sea. Baltica 28(1):41–50CrossRefGoogle Scholar
  52. Sergeev A, Zhamoida V, Ryabchuk D, Buynevich I, Sivkov V, Dorokhov D, Bitinas A, Pupienis D (in press) Genesis, distribution, and dynamics of lagoon marl extrusions along the Curonian spit, Southeast Baltic coast. BoreasGoogle Scholar
  53. Trimonis E, Gulbinskas S, Kuzavinis M (2003) The Curonian lagoon bottom sediments in the Lithuanian water area. Baltica 16:13–20Google Scholar
  54. Žilius M (2011) Oxygen and nutrient exchange at the sediment-water interface in the eutrophic boreal lagoon (Baltic Sea). Thesis of PhD, Klaipeda UniversityGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Albertas Bitinas
    • 1
    Email author
  • Jonas Mažeika
    • 2
  • Ilya V. Buynevich
    • 3
  • Aldona Damušytė
    • 4
  • Anatoly Molodkov
    • 5
  • Alma Grigienė
    • 4
  1. 1.Open Access Centre for Marine ResearchKlaipėda UniversityKlaipėdaLithuania
  2. 2.Laboratory of Nuclear Geophysics and RadioecologyState Research Institute Nature Research CentreVilniusLithuania
  3. 3.Temple UniversityPhiladelphiaUSA
  4. 4.Lithuanian Geological SurveyVilniusLithuania
  5. 5.Institute of GeologyTallinn University of TechnologyTallinnEstonia

Personalised recommendations