The Challenge of Baltic Sea Level Change

  • Birgit Hünicke
  • Eduardo ZoritaEmail author
  • Hans von Storch
Part of the Coastal Research Library book series (COASTALRL, volume 19)


Baltic Sea level variability is caused by different climatic and geological factors that render their understanding more difficult than for other areas of the Earth. Yet this understanding is crucial to predict with reliability the sea-level rise in the Baltic Sea that will be brought about by anthropogenic climate change. We illustrate this complexity by a few, in our opinion, important questions that ultimately are related to the estimation of long-term trends in the presence of land crust movements, to the heterogeneity of the Baltic sea-level response to atmospheric forcing, and the difficulty of identifying a sea-level rise acceleration in the observed records.


Baltic Sea Sea level Regional factors Acceleration 



This work is part of the Baltic Earth program ( and contributes to the Baltic Earth Grand Challenge ‘Sea-level dynamics’. The work benefited from regular discussions within the Research Area ‘Climate Sensitivity and Sea level’ of the Cluster of Excellence Integrated 794 Climate System Analysis and Prediction (CliSAP) funded by the German Research Foundation (DFG).


  1. Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi: 10.5194/os-11-67-2015 CrossRefGoogle Scholar
  2. BACC Author Team (2015) Second assessment of climate change for the Baltic Sea basin. Springer, BerlinCrossRefGoogle Scholar
  3. Bogdanov VI, Medvedev MY, Solodov VA, Trapeznikov YA, Troshkov GA, Trubitsina AA et al (2000) Mean monthly series of sea level observations (1777–1993) at Kronstadt gauge, Reports of the Finnish Geodetic Institute 2000, vol 1 pp 34Google Scholar
  4. Cazenave M, Remy F (2011) Sea level and climate: measurements and causes of changes. WIREs Clim Change 2:647–662CrossRefGoogle Scholar
  5. Christiansen B, Schmith T, Thejll P (2010) A surrogate ensemble study of sea level reconstructions. J Clim 23:4306–4326CrossRefGoogle Scholar
  6. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  7. Ebusizaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  8. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165CrossRefGoogle Scholar
  9. Ekman M (2009) The changing level of the Baltic Sea during 300 years: a clue to understanding the earth. Summer Institute for Historical Geophysics, p 155Google Scholar
  10. Ekman M, Mäkinen J (1996) Mean sea-surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J Geophys Res 101:11993–11999CrossRefGoogle Scholar
  11. Hansen JM, AAgard T, Binderup M (2011) Absolute sea levels and isostatic changes of the eastern North Sea to central Baltic region during the last 900 years. Boreas 41:180. doi: 10.1111/j.1502-3885.2011.00229.x CrossRefGoogle Scholar
  12. Hansson D, Eriksson C, Omstedt A, Chen D (2011) Reconstruction of river runoff to the Baltic Sea, AD 1500–1995. Int J Climatol 31:696–703CrossRefGoogle Scholar
  13. Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484CrossRefGoogle Scholar
  14. Hill EM, Davis JL, Tamisiea ME, Lidberg M (2010) Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia. J Geophys Res 115:B07403. doi: 10.1029/2009JB006967 Google Scholar
  15. Holgate SJ (2007) On the decadal rates of sea-level change during the 20th century. Geophys Res Lett 34:L01602CrossRefGoogle Scholar
  16. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. doi: 10.2112/JCOASTRES-D-12-00175.1 CrossRefGoogle Scholar
  17. Houston JR, Dean RG (2011) Sea-level acceleration based on US tide gauges and extensions of previous global-gauge analyses. J Coast Res 27:409. doi: 10.2112/JCOASTRES-D-10-00157.1 CrossRefGoogle Scholar
  18. Hünicke B, Zorita E (2008) Trends in the amplitude of Baltic Sea level annual cycle. Tellus 60A(1):154–164CrossRefGoogle Scholar
  19. Hünicke B, Zorita E, Soomere T, Madsen KS, Johansson M, Suursaar Ü (2015) “The BACC author team: second assessment of climate change for the Baltic Sea basin” (BACC II). Springer, Berlin, pp 155–185Google Scholar
  20. Jensen J, Töppe A (1986) Composition and evaluation of original records of the gauge at Travemünde/Baltic Sea since 1826. Deutsche Gewässerkundliche Mitteilungen 30(4):99–107Google Scholar
  21. Johansson JM, Davis JL, Scherneck HG, Milne GA, Vermeer M, Mitrovica JX, Bennet RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, Rönnäng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1 Geodetic results. J Geophys Res 107(B8):2157
  22. Kowalewska-Kalkowska H, Marks R (2011) 200 years of sea level measurements at the Swinoujscie tide gauge – an unique opportunity to study sea level variability at a regional scale. Scientific symposium 200 years of oldest continuous record of tide-gauge in Świnoujście, 18 November 2011, Świnoujście, PolandGoogle Scholar
  23. Lambeck K, Smither C, Johnston P (1998) Sea-level change, postglacial rebound and mantle viscosity for northern Europe. Geophys J Int 134:102–144CrossRefGoogle Scholar
  24. Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37:296–312CrossRefGoogle Scholar
  25. Madsen KS, Hoyer JL, Tscherning CC (2007) Near coastal satellite altimetry: sea surface height variability in the North Sea-Baltic Sea area. Geophys Res Lett 34(14):L14601CrossRefGoogle Scholar
  26. Meier MHE, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33:L15705CrossRefGoogle Scholar
  27. Meier HEM, Rutgersson A, Reckermann M (2014) An earth system science program for the Baltic Sea region. Eos Trans AGU 95(13):109CrossRefGoogle Scholar
  28. Merrifield MA, Merrifield ST, Mitchum GT (2009) An anomalous recent acceleration of global sea level rise. J Clim 22:5772–5781CrossRefGoogle Scholar
  29. Milne GA, Mitrovica JX, Scherneck H-G, Davis JL, Johansson JM, Koivula H, Vermeer M (2004) Continuous GPS measurements of postglacial adjustment in Fennoscandia. 2. Modeling results. J Geophys Res 109:B02412CrossRefGoogle Scholar
  30. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  31. Peltier WR (1998) Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev Geophys 36:603–689CrossRefGoogle Scholar
  32. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/ CrossRefGoogle Scholar
  33. Reckermann M, Langner J, Omstedt A, von Storch H, Keevallik S, Schneider B, Arheimer B, Meier HEM, Hünicke B (2011) BALTEX-An interdisciplinary research network for the Baltic Sea region. Environ Res Lett 6:045205CrossRefGoogle Scholar
  34. Richter A, Groh A, Dietrich R (2012) Geodetic observation of sea level change and crustal deformation in the Baltic Sea region. Phys Chem Earth 53–54:43–53CrossRefGoogle Scholar
  35. Rosentau R, Meyer M, Harff J, Dietrich R, Richter A (2007) Relative sea level change in the Baltic Sea since the littorina transgression. Z Geol Wiss 35:3–16Google Scholar
  36. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46CrossRefGoogle Scholar
  37. Stramska M (2013) Temporal variability of the Baltic Sea level based on satellite observations. Estuar Coast Shelf Sci 133:244–250CrossRefGoogle Scholar
  38. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505CrossRefGoogle Scholar
  39. Woodworth PL, Gehrels WR, Nerem RS (2011) Nineteenth and twentieth century changes in sea level. Oceanography 24(2):80–93CrossRefGoogle Scholar
  40. Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X et al (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Birgit Hünicke
    • 1
  • Eduardo Zorita
    • 1
    Email author
  • Hans von Storch
    • 1
  1. 1.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations