Skip to main content

What Determines the Change of Coastlines in the Baltic Sea?

  • Chapter
  • First Online:
Coastline Changes of the Baltic Sea from South to East

Part of the book series: Coastal Research Library ((COASTALRL,volume 19))

Abstract

The change of coastline positions of the Baltic Sea is mainly determined by both the eustatic sea-level change and the glacio-isostatic adjustment (GIA). For changes on the Holocene time scale, the relative sea-level change can be reconstructed from paleo-coastline positions and correspondingly dated sediments and organic remains. On the decadal scale, tide gauge data are available. Both data sets display the relative value of sea-level change resulting from the superposition of climatically and meteorologically induced factors, vertical crustal displacement, and related gravitational forces. The isolation of the GIA signal from the compound relative sea-level change data plays a critical role for future projections of coastline changes within the frame of coastal zone management. To separate different components of sea-level data sets, statistical methods for the exploration of empirical water level, meteorological, and GPS data are combined with analytical methods to solve the sea-level equation. In the result, the pattern of vertical crustal movement can be displayed as maps covering the uplifting Fennoscandian Shield and its subsiding belt. Whereas along the uplifting coasts morphodynamic processes play a subordinated role, in the subsiding Southeast and South, Quaternary sediments are permanently exposed to coastal erosion, sediment transport, and re-deposition. This mainly wave-driven sediment dynamics together with aeolian processes depend on meteorological forcing of the in general west-east directed air-flow from the northern Atlantic Ocean to Eurasia. Regional coastal morphogenesis can generally be described by alongshore sediment transport pattern deduced from the integration of subregional to local models of transport capacities. For future projection, coastlines and the morphology of the adjacent zones have to be regarded a function of its position related to the vertical displacement of the Earth's crust, the regional climatic and meteorological conditions, and the geological setting. Results of climate modelling, the Earth’s visco-elastic response to the deglaciation, geological data and regional sediment transport capacities have to be interpreted comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berglund M (2004) Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift center. Boreas 33:48–60

    Article  Google Scholar 

  • de Vriend HJ, Copabianco M, Chesher T, De Swart HE, Latteux B, Stive MJF (1993a) Long term modeling of coastal morphology. Coast Eng 21:225–269

    Article  Google Scholar 

  • de Vriend HJ, Zyserman J, Nicholson J, Roelvink JA, Pechon P, Southgate HN (1993b) Medium term 2DH coastal area modeling. Coast Eng 21:193–224

    Article  Google Scholar 

  • Deng J, Zhang W, Harff J, Schneider R, Dudzinska-Nowak J, Terefenko P, Giza A, Furmanczyk K (2014) A numerical approach to approximate historical morphology of wave-dominated coasts – a case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204:425–443

    Article  Google Scholar 

  • Deng J, Harff J, Zhang W, Schneider R, Dudzinska-Nowak J, Giza A, Terefenko P, Furmanczyk K (2017) The dynamic equilibrium shore model for the reconstruction and future projection of coastal morphodynamics. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east - past and future projection. Coastal research library, vol 19. Springer, Cham, pp 87–106

    Google Scholar 

  • Dimke S, Fröhle P (2008) Sediment transport at the coast of Mecklenburg-Vorpommern, Germany. Coastal Eng 2471–2480

    Google Scholar 

  • Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165

    Article  Google Scholar 

  • Ekman M (2009) The changing level of the Baltic Sea during 300 years: a clue to understanding the earth. Summer Institute for Historical Geophysics, Åland Islands, p 155

    Google Scholar 

  • Frischbutter A, Schwab G (1995) Karte der rezenten vertikalen Krustenbewegungen in der Umrahmung der OstseeDepression. Ein Beitrag zum IGCPProjekt Nr. 346: Neogeodynamica Baltica: Brandenburgische Geowissenschaftliche Beiträge 2:59–67

    Google Scholar 

  • Furmańczyk K (2013) Poland. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London and New York, pp 81–95

    Google Scholar 

  • Furmańczyk K, Musielak S (2015) Polish spits and barriers. In: Randazzo G, Jackson DWT, Cooper JAG (eds) Sand and gravel spits, Coastal Research Library, vol 12. Springer, Cham, pp 181–194

    Google Scholar 

  • Groh A, Dietrich R, Richter A (2011) Geodetic evidence and modelling of sea-level changes and load-induced crustal deformations in the southern Baltic Sea. Ber Römisch-Germanische Kommission 92:17–40

    Google Scholar 

  • Groh A, Richter A, Dietrich R (2017) Recent Baltic Sea level changes induced by past and present ice masses. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 55–68

    Google Scholar 

  • Harff J, Meyer M (2007) Changing Holocene coastal zones of the Baltic Sea – a modeling approach. In: Harff J, Lüth F (eds) Sinking coasts–geosphere, ecosphere and anthroposphere of the holocene Southern Baltic Sea, Ber d Römisch-Germanischen Kommission, vol 88. Verlag Philipp von Zabern, Frankfurt, pp 241–266

    Google Scholar 

  • Harff J, Lemke W, Lampe R, Lüth F, Lübke H, Meyer M, Tauber F, Schmölcke U (2007) The Baltic Sea coast – a model of interrelations among geosphere, climate, and anthroposphere. In: Harff J, Hay WW, Tetzlaff DM (eds) Coastline changes: interrelation of climate and geological processes. Geol Soc Am Spec Paper 426:133–142

    Google Scholar 

  • Harff J, Meyer M (2011) Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Heidelberg et al, pp 149–164

    Chapter  Google Scholar 

  • Harff J, Frischbutter A, Lampe R, Meyer M (2001) Sea level change in the Baltic Sea – interrelation of climatic and geological processes. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change, vol 47. AAPG-Studies in Geology, Tulsa, pp 231–250

    Google Scholar 

  • Harff J, Meyer M, Zhang W, Barthel A, Naumann M (2011) Holocene sediment dynamics at the southern Baltic Sea. Ber Röm-Germ Komm 92:41–76

    Google Scholar 

  • Hünicke B, Zorita E (2007) Estimation oft he influence of regional climate on recent past and future sea-level changes with statistical methods and simulations of climate models. Sinking coasts–geosphere, ecosphere and anthroposphere of the holocene Southern Baltic Sea. Ber Röm-Germ Komm 88:219–240

    Google Scholar 

  • Hünicke B, Zorita E, Haeseler S (2011) Holocene climate simulations for the Baltic Sea region- application for sea level and verification of proxy data. Ber Röm-Germ Komm 92:211–250

    Google Scholar 

  • Jensen J, Schwarzer K (2013) Germany. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London/New York, pp 96–107

    Google Scholar 

  • Jones OP, Petersen OS, Hansen HK (2007) Modelling of complex coastal environments: some considerations for best practise. Coast Eng 54:717–733

    Article  Google Scholar 

  • Kaczmarek LM, Ostrowski R, Szmytkiewicz M (2010) Sediment transport issues related to a planned cross-cut through the Vistula Spit, Poland. Arch Hydro-Eng Environ Mech 57(2):119–137

    Google Scholar 

  • Karlsson S, Risberg J (2005) Växthistoria och strandförskjutning i området kring Fjäturen och Gullsjön, södra Uppland. In: Johansson A, Lindgren C (eds) En introduktion till det arkeologiska projektet Norrortsleden. Birger Gustafsson, Stockholm, pp 71–126 (in Swedish)

    Google Scholar 

  • Kliewe H (1995) Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und ihrer Vorpommerschen Boddenküste. J. Coast. Res. Special Issue 17:181–186

    Google Scholar 

  • Kolp O (1978) Das Wachstum der Landspitze Darsser Ort. Petermanns Geogr Mitt 122:03–111

    Google Scholar 

  • Lambeck K, Purcell A, Zhao J, Svensson N-O (2010) The Scandinavian ice sheet: from MIS 4 to the end of the last glacial maximum. Boreas 39:410–435

    Article  Google Scholar 

  • Lampe R (1995) Küstentypen. In: Reinheimer G (ed) Meereskunde der Ostsee. Springer, Berlin/Heidelberg, pp 17–24

    Google Scholar 

  • Lampe R, Meyer H, Ziekur R, Janke W, Endtmann E (2007) Holocene evolution of the irregularly sinking southern Baltic Sea coast and the interactions of sea-level rise, accumulation space and sediment supply. Ber Röm-Germ Komm 88:9–14

    Google Scholar 

  • Latteux B (1995) Techniques for long-term morphological simulation under tidal action. Mar Geol 126:129–141

    Article  Google Scholar 

  • Linden M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22 

    Article  Google Scholar 

  • Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385

    Google Scholar 

  • Naumann M, Lampe R (2011) The evolution of a southern Baltic coastal barrier system, deduced from geostatistical based volume calculations and relative sea level rise (Darss-Zingst-Hiddensee area/NE Germany). Ber Röm-Germ Komm 92:297–324

    Google Scholar 

  • Nikolkina I, Soomere T, Räämet A (2014) Multidecadal ensemble hindcast of wave fields in the Baltic Sea, The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26–29, Tallinn Estonia; IEEE Conference Publications, p 9, ISBN 978–1–4799-5707-1, doi:10.1109/BALTIC.2014.6887854

    Google Scholar 

  • Nittrouer CA, Donelson Wright L (1994) Transport of particles across continental shelves. Rev Geophys 32:85–113

    Article  Google Scholar 

  • Ostrowski R, Pruszak Z, Skaja M, Szmytkiewicz M (2010) Variability of hydrodynamic and lithodynamic coastal processes in the east part of the Gulf of Gdansk. Arch Hydro-Eng Environ Mech 57(2):139–153

    Google Scholar 

  • Peltier WR (1998) Postglacial variations in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Rev Geophys 36:603–689

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Peltier WR (2007) Postglacial coastal evolution: ice-ocean-solid earth interactions in a period of rapid climate change. In: Harff J, Hay WW, Tetzlaff DM (eds) Coastline changes: interrelation of climate and geological processes, The Geological Society of America, Special Paper, vol 426, pp 5–28

    Google Scholar 

  • Pruszak Z, Szmytkiewicz M (2015) Delta Wisły – Ogólne mechanizmy tworzenia się delt i estuariów rzecznych. Wydawnictwo IBW PAN, Gdansk, p 126

    Google Scholar 

  • Reimann T, Harff J, Tsukamoto S, Oszadczuk K, Frechen M (2011) Reconstruction of Holocene coastal spit evolution and foredune accretion using luminescence dating – a case study from Świna barrier (southern Baltic Sea, NW Poland). Geomorphology 132:1–16

    Article  Google Scholar 

  • Richter A, Groh A, Dietrich R (2012) Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys Chem Earth 53–54:43–53. doi:10.1016/j.pce.2011.04.011

    Article  Google Scholar 

  • Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53:277–287

    Article  Google Scholar 

  • Rosa B (1984) Rozwój brzegu i jego odcinki akumulacyjne. In: Augustowski B (ed) Pobrzeże Pomorskie. Wydawnictwo PAN, Wrocław et al, pp 67–104

    Google Scholar 

  • Rosentau A, Meyer M, Harff J, Dietrich R, Richter A (2007) Relative sea level change in the Baltic Sea since the littorina transgression. Zeitschr f Geol Wiss 35(1/2):3–16 

    Google Scholar 

  • Rosentau A, Muru M, Gauk M, Oja T, Liibusk A, Kall T, Karro E, Roose A, Sepp M, Tammepuu A, Tross J, Uppin M (2017) Sea-level change and flood risks at Estonian coastal zone. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 55–68

    Google Scholar 

  • Soomere T, Viška M (2014) Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J Mar Syst 129:96–105

    Article  Google Scholar 

  • Soomere T, Viška M, Pindsoo K (2017) Retrieving the signal of climate change from numerically simulated sediment transport along the eastern Baltic Sea coast. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 327–361

    Google Scholar 

  • Tõnisson H, Orviku K, Lapinskis J, Gulbinskas S, Žaromskis R (2013) The Baltic states: Estonia, Latvia and Lithuania. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London/New York, pp 47–80

    Google Scholar 

  • U.S. Army Corps of Engineers (1984) Shore protection manual, 4th edn. Department of the Army, U.S. Corps of Engineers, Washington, DC

    Google Scholar 

  • Uścinowicz S (1985) Litodynamika podwodnego skłonu brzegowego na odcinku Mrzeżyno – Rowy. Prz Geol 12:683–688

    Google Scholar 

  • Uścinowicz S (2003) The southern Baltic relative sea level changes, glacio-isostatic rebound and shoreline displacement. Polish Geol Inst Spec Pap 10:79

    Google Scholar 

  • Uścinowicz S (2006) A relative sea-level curve for the Polish Southern Baltic Sea. Q Int 145–146:86–105

    Article  Google Scholar 

  • Viška M, Soomere T (2013) Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26(2):145–156

    Article  Google Scholar 

  • Zenkovič VP (1962) Osnovy učenija o razvitii moskich beregov. Izd Akad Nauk SSSR, Moskva, p 710 (in Russian)

    Google Scholar 

  • Zhang W, Harff J, Schneider R, Wu CY (2010a) A multi-scale centennial morphodynamic model for the southern Baltic coast. J Coast Res 27:890. doi:10.2112/jcoastres-d-10-00055.1

    Google Scholar 

  • Zhang Y, Harff J, Schneider R, Wu CY (2010b) Development of a modeling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60(5):1085–1114

    Article  Google Scholar 

  • Zhang W, Deng J, Harff J, Schneider R, Dudzinska-Nowak J (2013) A coupled modeling scheme for longshore sediment transport of wave-dominated coasts – a case study from the southern Baltic Sea. Coast Eng 72:39–55

    Article  Google Scholar 

  • Zhang W, Harff J, Schneider R, Meyer M, Zorita E, Hünicke B (2014) Holocene morphogenesis at the southern Baltic Sea: simulation of multiscale processes and their interactions for the Darss-Zingst peninsula. J Mar Syst 129:4–18

    Article  Google Scholar 

  • Zhang W, Schneider R, Harff J, Hünicke B, Froehle P (2017) Modeling of medium-term (decadal) coastal foredune morphodynamics – historical hindcast and future scenarios of the Świna Gate barrier coast (southern Baltic Sea). In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham

    Google Scholar 

Download references

Acknowledgements

The underlying research was financially supported by the Polish Ministry of Science and Higher Education (Project CoPaF, Grant N N306 340537), the German Research Foundation (DFG) (Research Unit SINCOS), and by the Estonian Ministry of Education and Research (Grant IUT33-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Harff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Harff, J. et al. (2017). What Determines the Change of Coastlines in the Baltic Sea?. In: Harff, J., Furmańczyk, K., von Storch, H. (eds) Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_2

Download citation

Publish with us

Policies and ethics