What Determines the Change of Coastlines in the Baltic Sea?

  • Jan HarffEmail author
  • Junjie Deng
  • Joanna Dudzińska-Nowak
  • Peter Fröhle
  • Andreas Groh
  • Birgit Hünicke
  • Tarmo Soomere
  • Wenyan Zhang
Part of the Coastal Research Library book series (COASTALRL, volume 19)


The change of coastline positions of the Baltic Sea is mainly determined by both the eustatic sea-level change and the glacio-isostatic adjustment (GIA). For changes on the Holocene time scale, the relative sea-level change can be reconstructed from paleo-coastline positions and correspondingly dated sediments and organic remains. On the decadal scale, tide gauge data are available. Both data sets display the relative value of sea-level change resulting from the superposition of climatically and meteorologically induced factors, vertical crustal displacement, and related gravitational forces. The isolation of the GIA signal from the compound relative sea-level change data plays a critical role for future projections of coastline changes within the frame of coastal zone management. To separate different components of sea-level data sets, statistical methods for the exploration of empirical water level, meteorological, and GPS data are combined with analytical methods to solve the sea-level equation. In the result, the pattern of vertical crustal movement can be displayed as maps covering the uplifting Fennoscandian Shield and its subsiding belt. Whereas along the uplifting coasts morphodynamic processes play a subordinated role, in the subsiding Southeast and South, Quaternary sediments are permanently exposed to coastal erosion, sediment transport, and re-deposition. This mainly wave-driven sediment dynamics together with aeolian processes depend on meteorological forcing of the in general west-east directed air-flow from the northern Atlantic Ocean to Eurasia. Regional coastal morphogenesis can generally be described by alongshore sediment transport pattern deduced from the integration of subregional to local models of transport capacities. For future projection, coastlines and the morphology of the adjacent zones have to be regarded a function of its position related to the vertical displacement of the Earth's crust, the regional climatic and meteorological conditions, and the geological setting. Results of climate modelling, the Earth’s visco-elastic response to the deglaciation, geological data and regional sediment transport capacities have to be interpreted comprehensively.


Coastal morphogenesis Glacio-isostatic adjustment Eustasy Gavitational force Relative sea-level change Sea-level equation Transgression Regression Wind waves Alongsore sediment transport capacity Coastal erosion Cliff coasts Sandy spits Regional sediment balance 



The underlying research was financially supported by the Polish Ministry of Science and Higher Education (Project CoPaF, Grant N N306 340537), the German Research Foundation (DFG) (Research Unit SINCOS), and by the Estonian Ministry of Education and Research (Grant IUT33-3).


  1. Berglund M (2004) Holocene shore displacement and chronology in Ångermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift center. Boreas 33:48–60CrossRefGoogle Scholar
  2. de Vriend HJ, Copabianco M, Chesher T, De Swart HE, Latteux B, Stive MJF (1993a) Long term modeling of coastal morphology. Coast Eng 21:225–269CrossRefGoogle Scholar
  3. de Vriend HJ, Zyserman J, Nicholson J, Roelvink JA, Pechon P, Southgate HN (1993b) Medium term 2DH coastal area modeling. Coast Eng 21:193–224CrossRefGoogle Scholar
  4. Deng J, Zhang W, Harff J, Schneider R, Dudzinska-Nowak J, Terefenko P, Giza A, Furmanczyk K (2014) A numerical approach to approximate historical morphology of wave-dominated coasts – a case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204:425–443CrossRefGoogle Scholar
  5. Deng J, Harff J, Zhang W, Schneider R, Dudzinska-Nowak J, Giza A, Terefenko P, Furmanczyk K (2017) The dynamic equilibrium shore model for the reconstruction and future projection of coastal morphodynamics. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east - past and future projection. Coastal research library, vol 19. Springer, Cham, pp 87–106Google Scholar
  6. Dimke S, Fröhle P (2008) Sediment transport at the coast of Mecklenburg-Vorpommern, Germany. Coastal Eng 2471–2480Google Scholar
  7. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165CrossRefGoogle Scholar
  8. Ekman M (2009) The changing level of the Baltic Sea during 300 years: a clue to understanding the earth. Summer Institute for Historical Geophysics, Åland Islands, p 155Google Scholar
  9. Frischbutter A, Schwab G (1995) Karte der rezenten vertikalen Krustenbewegungen in der Umrahmung der OstseeDepression. Ein Beitrag zum IGCPProjekt Nr. 346: Neogeodynamica Baltica: Brandenburgische Geowissenschaftliche Beiträge 2:59–67Google Scholar
  10. Furmańczyk K (2013) Poland. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London and New York, pp 81–95Google Scholar
  11. Furmańczyk K, Musielak S (2015) Polish spits and barriers. In: Randazzo G, Jackson DWT, Cooper JAG (eds) Sand and gravel spits, Coastal Research Library, vol 12. Springer, Cham, pp 181–194Google Scholar
  12. Groh A, Dietrich R, Richter A (2011) Geodetic evidence and modelling of sea-level changes and load-induced crustal deformations in the southern Baltic Sea. Ber Römisch-Germanische Kommission 92:17–40Google Scholar
  13. Groh A, Richter A, Dietrich R (2017) Recent Baltic Sea level changes induced by past and present ice masses. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 55–68Google Scholar
  14. Harff J, Meyer M (2007) Changing Holocene coastal zones of the Baltic Sea – a modeling approach. In: Harff J, Lüth F (eds) Sinking coasts–geosphere, ecosphere and anthroposphere of the holocene Southern Baltic Sea, Ber d Römisch-Germanischen Kommission, vol 88. Verlag Philipp von Zabern, Frankfurt, pp 241–266Google Scholar
  15. Harff J, Lemke W, Lampe R, Lüth F, Lübke H, Meyer M, Tauber F, Schmölcke U (2007) The Baltic Sea coast – a model of interrelations among geosphere, climate, and anthroposphere. In: Harff J, Hay WW, Tetzlaff DM (eds) Coastline changes: interrelation of climate and geological processes. Geol Soc Am Spec Paper 426:133–142Google Scholar
  16. Harff J, Meyer M (2011) Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Heidelberg et al, pp 149–164CrossRefGoogle Scholar
  17. Harff J, Frischbutter A, Lampe R, Meyer M (2001) Sea level change in the Baltic Sea – interrelation of climatic and geological processes. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change, vol 47. AAPG-Studies in Geology, Tulsa, pp 231–250Google Scholar
  18. Harff J, Meyer M, Zhang W, Barthel A, Naumann M (2011) Holocene sediment dynamics at the southern Baltic Sea. Ber Röm-Germ Komm 92:41–76Google Scholar
  19. Hünicke B, Zorita E (2007) Estimation oft he influence of regional climate on recent past and future sea-level changes with statistical methods and simulations of climate models. Sinking coasts–geosphere, ecosphere and anthroposphere of the holocene Southern Baltic Sea. Ber Röm-Germ Komm 88:219–240Google Scholar
  20. Hünicke B, Zorita E, Haeseler S (2011) Holocene climate simulations for the Baltic Sea region- application for sea level and verification of proxy data. Ber Röm-Germ Komm 92:211–250Google Scholar
  21. Jensen J, Schwarzer K (2013) Germany. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London/New York, pp 96–107Google Scholar
  22. Jones OP, Petersen OS, Hansen HK (2007) Modelling of complex coastal environments: some considerations for best practise. Coast Eng 54:717–733CrossRefGoogle Scholar
  23. Kaczmarek LM, Ostrowski R, Szmytkiewicz M (2010) Sediment transport issues related to a planned cross-cut through the Vistula Spit, Poland. Arch Hydro-Eng Environ Mech 57(2):119–137Google Scholar
  24. Karlsson S, Risberg J (2005) Växthistoria och strandförskjutning i området kring Fjäturen och Gullsjön, södra Uppland. In: Johansson A, Lindgren C (eds) En introduktion till det arkeologiska projektet Norrortsleden. Birger Gustafsson, Stockholm, pp 71–126 (in Swedish)Google Scholar
  25. Kliewe H (1995) Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und ihrer Vorpommerschen Boddenküste. J. Coast. Res. Special Issue 17:181–186Google Scholar
  26. Kolp O (1978) Das Wachstum der Landspitze Darsser Ort. Petermanns Geogr Mitt 122:03–111Google Scholar
  27. Lambeck K, Purcell A, Zhao J, Svensson N-O (2010) The Scandinavian ice sheet: from MIS 4 to the end of the last glacial maximum. Boreas 39:410–435CrossRefGoogle Scholar
  28. Lampe R (1995) Küstentypen. In: Reinheimer G (ed) Meereskunde der Ostsee. Springer, Berlin/Heidelberg, pp 17–24Google Scholar
  29. Lampe R, Meyer H, Ziekur R, Janke W, Endtmann E (2007) Holocene evolution of the irregularly sinking southern Baltic Sea coast and the interactions of sea-level rise, accumulation space and sediment supply. Ber Röm-Germ Komm 88:9–14Google Scholar
  30. Latteux B (1995) Techniques for long-term morphological simulation under tidal action. Mar Geol 126:129–141CrossRefGoogle Scholar
  31. Linden M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22 CrossRefGoogle Scholar
  32. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385Google Scholar
  33. Naumann M, Lampe R (2011) The evolution of a southern Baltic coastal barrier system, deduced from geostatistical based volume calculations and relative sea level rise (Darss-Zingst-Hiddensee area/NE Germany). Ber Röm-Germ Komm 92:297–324Google Scholar
  34. Nikolkina I, Soomere T, Räämet A (2014) Multidecadal ensemble hindcast of wave fields in the Baltic Sea, The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26–29, Tallinn Estonia; IEEE Conference Publications, p 9, ISBN 978–1–4799-5707-1, doi:10.1109/BALTIC.2014.6887854Google Scholar
  35. Nittrouer CA, Donelson Wright L (1994) Transport of particles across continental shelves. Rev Geophys 32:85–113CrossRefGoogle Scholar
  36. Ostrowski R, Pruszak Z, Skaja M, Szmytkiewicz M (2010) Variability of hydrodynamic and lithodynamic coastal processes in the east part of the Gulf of Gdansk. Arch Hydro-Eng Environ Mech 57(2):139–153Google Scholar
  37. Peltier WR (1998) Postglacial variations in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Rev Geophys 36:603–689CrossRefGoogle Scholar
  38. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G(VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  39. Peltier WR (2007) Postglacial coastal evolution: ice-ocean-solid earth interactions in a period of rapid climate change. In: Harff J, Hay WW, Tetzlaff DM (eds) Coastline changes: interrelation of climate and geological processes, The Geological Society of America, Special Paper, vol 426, pp 5–28Google Scholar
  40. Pruszak Z, Szmytkiewicz M (2015) Delta Wisły – Ogólne mechanizmy tworzenia się delt i estuariów rzecznych. Wydawnictwo IBW PAN, Gdansk, p 126Google Scholar
  41. Reimann T, Harff J, Tsukamoto S, Oszadczuk K, Frechen M (2011) Reconstruction of Holocene coastal spit evolution and foredune accretion using luminescence dating – a case study from Świna barrier (southern Baltic Sea, NW Poland). Geomorphology 132:1–16CrossRefGoogle Scholar
  42. Richter A, Groh A, Dietrich R (2012) Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys Chem Earth 53–54:43–53. doi: 10.1016/j.pce.2011.04.011 CrossRefGoogle Scholar
  43. Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53:277–287CrossRefGoogle Scholar
  44. Rosa B (1984) Rozwój brzegu i jego odcinki akumulacyjne. In: Augustowski B (ed) Pobrzeże Pomorskie. Wydawnictwo PAN, Wrocław et al, pp 67–104Google Scholar
  45. Rosentau A, Meyer M, Harff J, Dietrich R, Richter A (2007) Relative sea level change in the Baltic Sea since the littorina transgression. Zeitschr f Geol Wiss 35(1/2):3–16 Google Scholar
  46. Rosentau A, Muru M, Gauk M, Oja T, Liibusk A, Kall T, Karro E, Roose A, Sepp M, Tammepuu A, Tross J, Uppin M (2017) Sea-level change and flood risks at Estonian coastal zone. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 55–68Google Scholar
  47. Soomere T, Viška M (2014) Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J Mar Syst 129:96–105CrossRefGoogle Scholar
  48. Soomere T, Viška M, Pindsoo K (2017) Retrieving the signal of climate change from numerically simulated sediment transport along the eastern Baltic Sea coast. In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, Cham, pp 327–361Google Scholar
  49. Tõnisson H, Orviku K, Lapinskis J, Gulbinskas S, Žaromskis R (2013) The Baltic states: Estonia, Latvia and Lithuania. In: Pranzini E, Williams A (eds) Coastal erosion and protection in Europe. Routledge, London/New York, pp 47–80Google Scholar
  50. U.S. Army Corps of Engineers (1984) Shore protection manual, 4th edn. Department of the Army, U.S. Corps of Engineers, Washington, DCGoogle Scholar
  51. Uścinowicz S (1985) Litodynamika podwodnego skłonu brzegowego na odcinku Mrzeżyno – Rowy. Prz Geol 12:683–688Google Scholar
  52. Uścinowicz S (2003) The southern Baltic relative sea level changes, glacio-isostatic rebound and shoreline displacement. Polish Geol Inst Spec Pap 10:79Google Scholar
  53. Uścinowicz S (2006) A relative sea-level curve for the Polish Southern Baltic Sea. Q Int 145–146:86–105CrossRefGoogle Scholar
  54. Viška M, Soomere T (2013) Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26(2):145–156CrossRefGoogle Scholar
  55. Zenkovič VP (1962) Osnovy učenija o razvitii moskich beregov. Izd Akad Nauk SSSR, Moskva, p 710 (in Russian)Google Scholar
  56. Zhang W, Harff J, Schneider R, Wu CY (2010a) A multi-scale centennial morphodynamic model for the southern Baltic coast. J Coast Res 27:890. doi: 10.2112/jcoastres-d-10-00055.1 Google Scholar
  57. Zhang Y, Harff J, Schneider R, Wu CY (2010b) Development of a modeling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60(5):1085–1114CrossRefGoogle Scholar
  58. Zhang W, Deng J, Harff J, Schneider R, Dudzinska-Nowak J (2013) A coupled modeling scheme for longshore sediment transport of wave-dominated coasts – a case study from the southern Baltic Sea. Coast Eng 72:39–55CrossRefGoogle Scholar
  59. Zhang W, Harff J, Schneider R, Meyer M, Zorita E, Hünicke B (2014) Holocene morphogenesis at the southern Baltic Sea: simulation of multiscale processes and their interactions for the Darss-Zingst peninsula. J Mar Syst 129:4–18CrossRefGoogle Scholar
  60. Zhang W, Schneider R, Harff J, Hünicke B, Froehle P (2017) Modeling of medium-term (decadal) coastal foredune morphodynamics – historical hindcast and future scenarios of the Świna Gate barrier coast (southern Baltic Sea). In: Harff J, Furmanczyk K, von Storch H (eds) Coastline changes of the Baltic Sea from south to east – past and future projection. Coastal research library, vol 19. Springer, ChamGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jan Harff
    • 1
    Email author
  • Junjie Deng
    • 2
  • Joanna Dudzińska-Nowak
    • 1
  • Peter Fröhle
    • 3
  • Andreas Groh
    • 4
  • Birgit Hünicke
    • 5
  • Tarmo Soomere
    • 6
  • Wenyan Zhang
    • 6
  1. 1.Institute of Marine and Coastal SciencesUniversity of SzczecinSzczecinPoland
  2. 2.School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  3. 3.Technical University Hamburg-HarburgHamburgGermany
  4. 4.Technische Universität Dresden, Institut für Planetare GeodäsieDresdenGermany
  5. 5.Helmholtz Zentrum GeesthachtGeesthachtGermany
  6. 6.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations