Abstract
Coastline changes are becoming an increasingly important topic along with continuously rising sea level and an increase in extreme storm events. This holds at the southern Baltic Sea coast where eustatic change, glacio-isostatic land subsidence, and strong storms events cause at most parts a continuous coastal retreat. The coastline changes at the time scale of decadal to centennial are the long-term accumulative effect of climate forces, meanwhile anthropogenic influences have to be taken into consideration as well. From a set of historical maps covering almost 300 years, in particular the “Messtischblatt” maps (starting with 1829 AD) provide the condition to be geo-referenced for quantitative comparisons with modern Digital Elevation Models. The accuracy of these maps is quantified by using the Root Mean Square Error of spatial differences of fixed points between the modern aerial photographs and historical maps. A first-order polynomial transformation is chosen to geo-reference the maps. The comparisons between historical maps and the modern coastline derived from a Digital Elevation Model indicate that the coast can be subdivided into four zones (types) in terms of the trend of coastline changes: A continuously retreating (A-) or advancing coastline (A+); B relatively stable coastline (coastline changes are within the accuracy error bars); C anthropogenically influenced coastline changes; D randomly changing coastline. This classification is found to coincide with the mean coastline geodetic orientations and the gradient of alongshore sediment transport capacity. This remarkable coincidence confirms the reliability of the reconstructed coastline changes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bärring L, von Storch H (2004) Scandinavian storminess since about 1800. Geophys Res Lett 31:L20202. doi:10.1029/2004GL020441
Brovelli M, Zamboni G (2004) Adaptive transformations of cartographic bases by means of multiresolutions spline interpolation. XXth ISPRS congress, commision 2. ISSN 1682-1750, vol XXXV, part B2. 206–211
Brunel C, Sabatier F (2009) Potential influence of sea-level rise in controlling shoreline position on the French Mediterranean Coast. Geomorphology 107:47–57
Cieślak A (1995) Contemporary coastal transformation – the coastal management and protection aspect. In: Rotnicki K (ed) Polish coast- past, present and future. Sp. Is. J Coast Res 22:63–71
Deng J, Zhang W, Harff J, Schneider R, Dudzinska-Nowak J, Terefenko P, Furmańczyk K (2014) A numerical approach for approximating the historical morphology of wave-dominated coasts – a case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204:425–443
Deng J, Harff J, Schimanke S, Meier M (2015) A method for estimating coastline recession due to sea level rise by assuming stationary wind-wave climate. Oceanol Hydrobiol Stud 44(3):362–380
Dudzinska-Nowak J (2006a) Zmiennosc morfologii strefy brzegowej jako wskaznik tendencji rozwojowych brzegu (Variability of the coastal zone morphology as a indicator of the coastline tendency development). Doctoral thesis, Szczecin University, pp 226
Dudzinska-Nowak J (2006b) Coastline long-term changes of the selected area of the Pomeranian Bay. In: Tubilewicz A (ed) Coastal dynamic geomorphology and protection. Eurocoast, Gdańsk, pp 163–170
Dudzinska-Nowak J (2015) Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938–2011 (Coastal protection methods used along Western Poland (southern Baltic Sea) and the subsequent shoreline effects (1938–2011). University of Szczecin, pp 171
Ekman M (2007) A secular change in storm activity over the Baltic Sea detected through analysis of sea level data. Small Publications in Historical Geophysics 16, Summer institute for historical geophysics,, Bomarsund, Åland Islands
Engelmann G (1968) Die Kartographen und Kartenbearbeiter der Preußischen Urmeßtischblätter. In: Kartengeschichte und Kartenbearbeitung (Festschrift für W. Bonacker), Bad Godesberg, pp 227–232
Furmańczyk K, Musielak S, Prajs J (1991) Remote sensing characteristics of dynamics of the Hel Peninsula Fragment of Shoreline. In: Proceedings of EARSeL 11th Symposium, Austria, Graz, pp 208–215
Furmańczyk K, Dudzińska-Nowak J (2009) Effects of extreme storms on coastline changes: a southern Baltic example. J Coast Res 2009:1637–1640
Furmańczyk KK, Dudzińska-Nowak J, Furmanczyk KA, Paplinska-Swerpel B, Brzezowska N (2012) Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit, Poland. Geomorphology 143-144:62–68. doi:10.1016/j.geomorph.2011.09.007
Gaspari AC, Hassel G, Cannabich JGF (1819) Vollständiges Handbuch der neuesten Erdbeschreibung. Verlag des Geographischen Instituts, Weimar, p 173
Gauss KF (1825) Allgemeine Auflösung der Aufgabe: die Theile einer gegebnen Fläche auf einer andern gegebnen Fläche so abzubilden, daß die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich wird. Preisarbeit der Kopenhagener Akademie,1822. Schumacher Astronomische Abhandlungen, Altona 3:5–30. [Reprinted, 1894, Ostwald’s Klassiker der Exakten Wissenschaften, no. 55: Leipzig, Wilhelm Engelmann, p 57–81, with editing by Albert Wangerin, pp 97–101. Also in Herausgegeben von der Gesellschaft der Wissenschaften zu Göttingen in Kommission bei Julius Springer in Berlin, 1929, 12:1–9
Harff J, Lüth F (eds) (2007) Sinking coasts – geosphere ecosphere and anthroposphere of the holocene Southern Baltic Sea. Ber d Römisch-Germanischen Kommission
Harff J, Meyer M (2011) Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the Southern Baltic. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin. Springer, Berlin/Heidelberg, pp 149–164
Hoffmann L (1861) Mathematisches Wörterbuch, Band 3. Verlag Gustav Bosselmann, Berlin, p 144
IPCC (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013 (1535). Cambridge University Press, Cambridge/New York
Jahnke W, Lampe R (1993) Monographische Darstellung der subrezenten, historischen und prognostischen Küstenentwicklung der Außenküste Mecklenburg – Vorpommerns auf der Grundlage derzeit verfügbarer Daten und Untersuchungsergebnisse. Unveröffentl. Studie, Greifswald/ Hinrichshagen, p 37
James LA, Hodgson ME, Ghoshal S, Latiolais MM (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137:181–198. doi:10.1016/j.geomorph.2010.10.039
Kohlhase S, Frohle P, Koppe B (1999) LIMNOLOGICA coastal protection of the Isle of usedom – conceptional design of an offshore breakwater system at the Streckelsberg, Baltic Sea conceptional considerations. Limnologica 29:325–331
Krüger L (1912) Konforme Abbildung des Erdellipsoids in der Ebene. Royal Prussian Geodetic Institute, New Series 52
Labuz T, Kowalewska-Kalkowska H (2011) Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim Res 48:93–101
Le Cozannet G, Garcin M, Yates M, Idier D, Meyssignac B (2014) Approaches to evaluate the recent impacts of sea-level rise on shoreline changes. Earth-Sci Rev 138:47–60. doi:10.1016/j.earscirev.2014.08.005
Meyer HI (ed) (1867) Ergänzungsblätter zur Kenntnis der Gegenwart. Verlag des Biblographischen Institutes, Hildburghausen 89
Richter A, Groh A, Dietrich R (2012) Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Phys Chem Earth Parts A/B/C 53–54:43–53
Schleinert D (2005) Die Geschichte der Insel Usedom. Hinstorff, Rostock. ISBN 3-356-01081-6, p 97
U.S. Army Corps of Engineers (1984) Shore protection manual, 4th edn. Department of the Army, U.S. Corps of Engineers, Washington, DC
Zawadzka E (1999) Development tendencies of the Polish south Baltic coast (in Polish). GTN Gdansk, pp 147
Zeidler RB, Woblewski A, Mietus M, Dziaddziuszko Z, Cyperski J (1995) Wind, wave, and storm surge regime at the Polish Baltic coast. J Coastal Res Spec Issue 22:33–55
Zeune A (1844) Die drei Stufen der Erdkunde für Höhere und Niedere Schulen. Verlag Theodor Christoph Enslin, Berlin, p 2
Zhang W, Harff J, Schneider R, Wu C (2010) Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60:1085–1114. doi:10.1007/s10236-010-0311-5
Zhang W, Deng J, Harff J, Schneider R, Dudzinska-Nowak J (2013) A coupled modeling scheme for longshore sediment transport of wave-dominated coasts – a case study from the southern Baltic Sea. Coast Eng 72:39–55
Acknowledgments
This study was supported by the COPAF project funded by the Ministry of Science and Higher Education in Poland, the Baltic Network project funded by the University of Greifswald, Germany and the research grant (No. DEC-2011/01/N/ST10/07531) awarded by the National Science Centre (in Polish: Narodowe Centrum Nauki, NCN). The historical maps used in this study are provided by the University of Greifswald and the University of Adam Mickiewicz in Poznan. We thank Prof. Hua Zhang, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences and Prof. Hans von Storch, Helmholtz Centrum Geesthacht for providing constructive comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Deng, J. et al. (2017). Reconstruction of Coastline Changes by the Comparisons of Historical Maps at the Pomeranian Bay, Southern Baltic Sea. In: Harff, J., Furmańczyk, K., von Storch, H. (eds) Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-49894-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49892-8
Online ISBN: 978-3-319-49894-2
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)