Advertisement

Groups and Symmetries in Numerical Linear Algebra

  • Hans Z. Munthe-KaasEmail author
Chapter
  • 1k Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2173)

Abstract

Groups are fundamental objects of mathematics, describing symmetries of objects and also describing sets of motions moving points in a domain, such as translations in the plane and rotations of a sphere. The topic of these lecture notes is applications of group theory in computational mathematics. We will first cover fundamental properties of groups and continue with an extensive discussion of commutative (abelian) groups and their relationship to computational Fourier analysis. Various numerical algorithms will be discussed in the setting of group theory. Finally we will, more briefly, discuss generalisation of Fourier analysis to non-commutative groups and discuss problems in linear algebra with non-commutative symmetries. The representation theory of non-commutative finite groups is used as a tool to efficiently solve linear algebra problems with symmetries, exemplified by the computation of matrix exponentials.

Keywords

Abelian Group Discrete Fourier Transform Short Exact Sequence Semidirect Product Schwartz Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I would like to express a deep gratitude towards CIME and the organisers of this summer school for inviting me to present these lectures and for their patience with me during the tortuous process of writing the lecture notes. Also, I would like to thank Ulrich von der Ohe for his careful reading and commenting upon the manuscript.

References

  1. 1.
    K. Åhlander, H. Munthe-Kaas, Applications of the Generalized Fourier Transform in numerical linear algebra. BIT 45 (4), 819–850 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E.L. Allgower, K. Böhmer, K. Georg, R. Miranda, Exploiting symmetry in boundary element methods. SIAM J. Numer. Anal. 29, 534–552 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E.L. Allgower, K. Georg, R. Miranda, Exploiting permutation symmetry with fixed points in linear equations, in Lectures in Applied Mathematics, vol. 29, ed. by E.L. Allgower, K. Georg, R. Miranda (American Mathematical Society, Providence, RI, 1993), pp. 23–36Google Scholar
  4. 4.
    E.L. Allgower, K. Georg, R. Miranda, J. Tausch, Numerical exploitation of equivariance. Z. Angew. Math. Mech. 78, 185–201 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Auslander, R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics? Not. AMS 1 (6), 847–897 (1979)MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Bossavit, Symmetry, groups, and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Eng. 56, 167–215 (1986)zbMATHGoogle Scholar
  7. 7.
    S.H. Christiansen, H.Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization. Acta Numer. 20 (1), 1–119 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J.H. Conway, N.J.A. Sloane, E. Bannai, Sphere Packings, Lattices, and Groups, vol. 290 (Springer, Berlin, 1999)CrossRefGoogle Scholar
  9. 9.
    C.C. Douglas, J. Mandel, Abstract theory for the domain reduction method. Computing 48, 73–96 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A.F. Fässler, E. Stiefel, Group Theoretical Methods and Their Applications (Birkhäuser, Boston, 1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    C. Gasquet, P. Witomski, Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets, vol. 30 (Springer Science & Business Media, Berlin, 2013)Google Scholar
  12. 12.
    K. Georg, R. Miranda, Exploiting symmetry in solving linear equations, in Bifurcation and Symmetry, vol. 104, ed. by E.L. Allgower, K. Böhmer, M. Golubisky. International Series of Numerical Mathematics (Birkhäuser, Basel, 1992), pp. 157–168Google Scholar
  13. 13.
    M.E. Hoffman, W.D. Withers, Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. AMS 308 (1), 91–104 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Iserles, H. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods. Acta Numerica, vol. 9 (Cambridge University Press, Cambridge, 2000), pp. 215–365Google Scholar
  15. 15.
    G. James, M. Liebeck, Representations and Characters of Groups, 2nd edn. (Cambridge University Press, Cambridge, 2001). ISBN 052100392XCrossRefzbMATHGoogle Scholar
  16. 16.
    J.S. Lomont, Applications of Finite Groups (Academic, New York, 1959)zbMATHGoogle Scholar
  17. 17.
    S. Mac Lane, Categories for the Working Mathematician, vol. 5 (Springer Science & Business Media, Berlin, 2013)Google Scholar
  18. 18.
    H. Munthe-Kaas, Symmetric FFTs; a general approach. Technical Report, NTNU, Trondheim, 1989. Available at: http://hans.munthe-kaas.no Google Scholar
  19. 19.
    H. Munthe-Kaas, Topics in linear algebra for vector- and parallel computers. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), 1989Google Scholar
  20. 20.
    H.Z. Munthe-Kaas, On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A Math. Gen. 39, 5563 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Munthe-Kaas, T. Sørevik, Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62 (3), 155–165 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    H.Z. Munthe-Kaas, M. Nome, B.N. Ryland, Through the kaleidoscope; symmetries, groups and Chebyshev approximations from a computational point of view, in Foundations of Computational Mathematics, Budapest 2011. London Mathematical Society Lecture Notes Series, vol. 403 (Cambridge University Press, Cambridge, 2013), pp. 188–229Google Scholar
  23. 23.
    M.S. Osborne, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups. J. Funct. Anal. 19 (1), 40–49 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    W. Rudin, Fourier Analysis on Groups, vol. 12 (Wiley-Interscience, New York, 1990)CrossRefzbMATHGoogle Scholar
  25. 25.
    B.N. Ryland, H.Z. Munthe-Kaas, On multivariate Chebyshev polynomials and spectral approximations on triangles, in Spectral and High Order Methods for Partial Differential Equations, vol. 76, ed. by J.S. Hesthaven, E.M. Rønquist. Lecture Notes in Computer Science and Engineering (Springer, Berlin, 2011), pp. 19–41Google Scholar
  26. 26.
    J.P. Serre, Linear Representations of Finite Groups (Springer, Berlin, 1977). ISBN 0387901906CrossRefzbMATHGoogle Scholar
  27. 27.
    R.J. Stanton, P.A. Tomas, Polyhedral summability of Fourier series on compact Lie groups. Am. J. Math. 100 (3), 477–493 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    P.N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19 (3), 490–501 (1977)MathSciNetzbMATHGoogle Scholar
  29. 29.
    S. Thangavelu, Harmonic Analysis on the Heisenberg Group, vol. 159 (Birkhauser, Basel, 2012)zbMATHGoogle Scholar
  30. 30.
    G. Travaglini, Polyhedral summability of multiple Fourier series. Colloq. Math. 65, 103–116 (1993)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wikipedia. Smith normal form — Wikipedia, the free encyclopedia (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations