Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2173))

Abstract

Groups are fundamental objects of mathematics, describing symmetries of objects and also describing sets of motions moving points in a domain, such as translations in the plane and rotations of a sphere. The topic of these lecture notes is applications of group theory in computational mathematics. We will first cover fundamental properties of groups and continue with an extensive discussion of commutative (abelian) groups and their relationship to computational Fourier analysis. Various numerical algorithms will be discussed in the setting of group theory. Finally we will, more briefly, discuss generalisation of Fourier analysis to non-commutative groups and discuss problems in linear algebra with non-commutative symmetries. The representation theory of non-commutative finite groups is used as a tool to efficiently solve linear algebra problems with symmetries, exemplified by the computation of matrix exponentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Åhlander, H. Munthe-Kaas, Applications of the Generalized Fourier Transform in numerical linear algebra. BIT 45 (4), 819–850 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. E.L. Allgower, K. Böhmer, K. Georg, R. Miranda, Exploiting symmetry in boundary element methods. SIAM J. Numer. Anal. 29, 534–552 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.L. Allgower, K. Georg, R. Miranda, Exploiting permutation symmetry with fixed points in linear equations, in Lectures in Applied Mathematics, vol. 29, ed. by E.L. Allgower, K. Georg, R. Miranda (American Mathematical Society, Providence, RI, 1993), pp. 23–36

    Google Scholar 

  4. E.L. Allgower, K. Georg, R. Miranda, J. Tausch, Numerical exploitation of equivariance. Z. Angew. Math. Mech. 78, 185–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Auslander, R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics? Not. AMS 1 (6), 847–897 (1979)

    MathSciNet  MATH  Google Scholar 

  6. A. Bossavit, Symmetry, groups, and boundary value problems. A progressive introduction to noncommutative harmonic analysis of partial differential equations in domains with geometrical symmetry. Comput. Methods Appl. Mech. Eng. 56, 167–215 (1986)

    MATH  Google Scholar 

  7. S.H. Christiansen, H.Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization. Acta Numer. 20 (1), 1–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. J.H. Conway, N.J.A. Sloane, E. Bannai, Sphere Packings, Lattices, and Groups, vol. 290 (Springer, Berlin, 1999)

    Book  Google Scholar 

  9. C.C. Douglas, J. Mandel, Abstract theory for the domain reduction method. Computing 48, 73–96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.F. Fässler, E. Stiefel, Group Theoretical Methods and Their Applications (Birkhäuser, Boston, 1992)

    Book  MATH  Google Scholar 

  11. C. Gasquet, P. Witomski, Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets, vol. 30 (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  12. K. Georg, R. Miranda, Exploiting symmetry in solving linear equations, in Bifurcation and Symmetry, vol. 104, ed. by E.L. Allgower, K. Böhmer, M. Golubisky. International Series of Numerical Mathematics (Birkhäuser, Basel, 1992), pp. 157–168

    Google Scholar 

  13. M.E. Hoffman, W.D. Withers, Generalized Chebyshev polynomials associated with affine Weyl groups. Trans. AMS 308 (1), 91–104 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Iserles, H. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods. Acta Numerica, vol. 9 (Cambridge University Press, Cambridge, 2000), pp. 215–365

    Google Scholar 

  15. G. James, M. Liebeck, Representations and Characters of Groups, 2nd edn. (Cambridge University Press, Cambridge, 2001). ISBN 052100392X

    Book  MATH  Google Scholar 

  16. J.S. Lomont, Applications of Finite Groups (Academic, New York, 1959)

    MATH  Google Scholar 

  17. S. Mac Lane, Categories for the Working Mathematician, vol. 5 (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  18. H. Munthe-Kaas, Symmetric FFTs; a general approach. Technical Report, NTNU, Trondheim, 1989. Available at: http://hans.munthe-kaas.no

    Google Scholar 

  19. H. Munthe-Kaas, Topics in linear algebra for vector- and parallel computers. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), 1989

    Google Scholar 

  20. H.Z. Munthe-Kaas, On group Fourier analysis and symmetry preserving discretizations of PDEs. J. Phys. A Math. Gen. 39, 5563 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Munthe-Kaas, T. Sørevik, Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62 (3), 155–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. H.Z. Munthe-Kaas, M. Nome, B.N. Ryland, Through the kaleidoscope; symmetries, groups and Chebyshev approximations from a computational point of view, in Foundations of Computational Mathematics, Budapest 2011. London Mathematical Society Lecture Notes Series, vol. 403 (Cambridge University Press, Cambridge, 2013), pp. 188–229

    Google Scholar 

  23. M.S. Osborne, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups. J. Funct. Anal. 19 (1), 40–49 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Rudin, Fourier Analysis on Groups, vol. 12 (Wiley-Interscience, New York, 1990)

    Book  MATH  Google Scholar 

  25. B.N. Ryland, H.Z. Munthe-Kaas, On multivariate Chebyshev polynomials and spectral approximations on triangles, in Spectral and High Order Methods for Partial Differential Equations, vol. 76, ed. by J.S. Hesthaven, E.M. Rønquist. Lecture Notes in Computer Science and Engineering (Springer, Berlin, 2011), pp. 19–41

    Google Scholar 

  26. J.P. Serre, Linear Representations of Finite Groups (Springer, Berlin, 1977). ISBN 0387901906

    Book  MATH  Google Scholar 

  27. R.J. Stanton, P.A. Tomas, Polyhedral summability of Fourier series on compact Lie groups. Am. J. Math. 100 (3), 477–493 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. P.N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19 (3), 490–501 (1977)

    MathSciNet  MATH  Google Scholar 

  29. S. Thangavelu, Harmonic Analysis on the Heisenberg Group, vol. 159 (Birkhauser, Basel, 2012)

    MATH  Google Scholar 

  30. G. Travaglini, Polyhedral summability of multiple Fourier series. Colloq. Math. 65, 103–116 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Wikipedia. Smith normal form — Wikipedia, the free encyclopedia (2015)

    Google Scholar 

Download references

Acknowledgements

I would like to express a deep gratitude towards CIME and the organisers of this summer school for inviting me to present these lectures and for their patience with me during the tortuous process of writing the lecture notes. Also, I would like to thank Ulrich von der Ohe for his careful reading and commenting upon the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Z. Munthe-Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Munthe-Kaas, H.Z. (2016). Groups and Symmetries in Numerical Linear Algebra. In: Benzi, M., Simoncini, V. (eds) Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications . Lecture Notes in Mathematics(), vol 2173. Springer, Cham. https://doi.org/10.1007/978-3-319-49887-4_5

Download citation

Publish with us

Policies and ethics