Physarum Inspired Audio: From Oscillatory Sonification to Memristor Music

  • Ella Gale
  • Oliver Matthews
  • Jeff Jones
  • Richard Mayne
  • Georgios Sirakoulis
  • Andrew AdamatzkyEmail author


Slime mould Physarum polycephalum is a single-celled amoeboid organism known to possess features of a membrane-bound reaction–diffusion medium with memristive properties. Studies of oscillatory and memristive dynamics of the organism suggest a role for behaviour interpretation via sonification and, potentially, musical composition. Using a simple particle model, we initially explore how sonification of oscillatory dynamics can allow the audio representation of the different behavioural patterns of Physarum. Physarum shows memristive properties. At a higher level, we undertook a study of the use of a memristor network for music generation, making use of the memristor’s memory to go beyond the Markov hypothesis. Seed transition matrices are created and populated using memristor equations, and which are shown to generate musical melodies and change in style over time as a result of feedback into the transition matrix. The spiking properties of simple memristor networks are demonstrated and discussed with reference to applications of music making.


Connection Weight Slime Mould Oscillatory Dynamic Physarum Polycephalum Tubular Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by EPSRC grant EP/H01438/1 and the EU research project ‘Physarum Chip: Growing Computers from Slime Mould’ (FP7 ICT Ref 316366).


  1. Adamatzky, A. (2010). Physarum machines: computers from slime mould, Vol. 74. World Scientific.Google Scholar
  2. Adamatzky, A. (2013a). Physarum wires: Self-growing self-repairing smart wires made from slime mould. Biomedical Engineering Letters, 3(4), 232–241.CrossRefGoogle Scholar
  3. Adamatzky, A. (2013b). Slime mould tactile sensor. Sensors and actuators B: chemical, 188, 38–44.CrossRefGoogle Scholar
  4. Adamatzky, A. (2013c). Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Organic Electronics, 14(12), 3355–3361.CrossRefGoogle Scholar
  5. Adamatzky, A. (2014). Slime mould electronic oscillators. Microelectronic Engineering, 124, 58–65.CrossRefGoogle Scholar
  6. Adamatzky, A. (2015). Thirty eight things to do with live slime mould. arXiv preprint arXiv:1512.08230.
  7. Adamatzky, A. (Ed.). (2016). Advances in unconventional computing. Springer.Google Scholar
  8. Adamatzky, A. (Ed.). (2016). Advances in Physarum machines: Sensing and computing with slime mould. Springer.Google Scholar
  9. Adamatzky, A. (2016). Advances in Physarum machines: Sensing and computing with slime mould, Vol. 21. Springer.Google Scholar
  10. Adamatzky, A., & Jones, J. (2011). On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum machine in the dark? Biophysical Reviews and Letters, 6, 29–57.CrossRefGoogle Scholar
  11. Adamatzky, A., & Prokopenko, M. (2012). Slime mould evaluation of australian motorways. IJPEDS, 27(4), 275–295.Google Scholar
  12. Adamatzky, A., & Teuscher, C. (Eds.) (2006). From utopian to genuine unconventional computers. Luniver press.Google Scholar
  13. Adamatzky, A., Bull, L., & De Lacy Costello, B. (Eds.). (2007). Unconventional computing 2007. Luniver Press.Google Scholar
  14. Adamatzky, A., Akl, S. G., Alonso-Sanz, R., van Dessel, W., Ibrahim, Z., Ilachinski, A., & Jones, J. (2013). Are motorways rational from slime mould’s point of view? IJPEDS, 28(3):230–248.Google Scholar
  15. Aguiar, P. M., Hornby, R., McGarry, C., O’Keefe, S., & Sebald, A. (2016). Discrete and continuous systems of logic in nuclear magnetic resonance. IJUC, 12(2–3), 109–132.Google Scholar
  16. Akl, S. G. (2014). What is computation? IJPEDS, 29(4), 337–345.Google Scholar
  17. Aono, M., Zhu, L., & Hara, M. (2011). Amoeba-based neurocomputing for 8-city traveling salesman problem. IJUC, 7(6), 463–480.Google Scholar
  18. Brooks Jr., F. P., Neumann, P. G., Hopkins Jr., A. L., & Wright, W. V. (1992). An experiment in musical composition. MIT Press.Google Scholar
  19. Brown, D. E. (1991). Human universals. Temple University Press.Google Scholar
  20. Bull, Larry. (2016). On the evolution of boolean networks for computation: A guide RNA mechanism. IJPEDS, 31(2), 101–113.Google Scholar
  21. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.Google Scholar
  22. Chua, L. O. (1971b). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  23. Chua, L., Sbitnev, V., & Kim, H. (2012a). Hodgkin-huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 22:1230011 (48 pp).Google Scholar
  24. Chua, L., Sbitnev, V., & Kim, H. (2012). Neurons are poised near the edge of chaos. International Journal of Bifurcation and Chaos, 11:1250098 (49 pp).Google Scholar
  25. Cieslawska, M., & Grebecki, A. (1979). Synchrony of contractions in freely migrating plasmodia of Physarum polycephalum. Acta Protozoologica.Google Scholar
  26. Cifarelli, A., Dimonte, A., Berzina, T., & Erokhin, V. (2014). Non-linear bioelectronic element: Schottky effect and electrochemistry. International Journal of Unconventional Computing, 10(5–6), 375–379.Google Scholar
  27. Cihodariu, M. (2011). A rough guide to musical anthropology. Journal of Comparative Research in Anthropology and Sociology, 2, 183–195.Google Scholar
  28. Dourvas, N. I., Sirakoulis, G. C., & Tsalides, P. (2015). Gpu implementation of physarum cellular automata model. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014) (Vol. 1648, p. 580019). AIP Publishing.Google Scholar
  29. Dourvas, N., Tsompanas, M.-A., Sirakoulis, G. C., & Tsalides, P. (2015b). Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Processing Letters, 25(01), 1540006.MathSciNetCrossRefGoogle Scholar
  30. Dourvas, N., Tsompanas, M.-A., Sirakoulis, G. C., & Tsalides, P. (2015c). Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Processing Letters, 25(01), 1540006.MathSciNetCrossRefGoogle Scholar
  31. Gale, E., & Adamatzky, A. (2016). Translating slime mould responses: A novel way to present data to the public. In A. Adamatzky (Ed.), Advances in Physarum Machines, Heidelberg: Springer.Google Scholar
  32. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., & De Lacy Costello, B. (2011). Aluminium electrodes effect the operation of titanium oxide sol-gel memristors. arXiv:1106.6293v1
  33. Gale, E. M., De Lacy Costello, B., & Adamatzky, A. (2012, Sept.). Observation and characterization of memristor current spikes and their application to neuromorphic computation. In 2012 International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2012), Kos, Greece.Google Scholar
  34. Gale, E., De Lacy Costello, B., & Adamatzky, A. (2012b). Memristor-based information gathering approaches, both ant-inspired and hypothetical. Nano Communication Networks, 3, 203–216.CrossRefGoogle Scholar
  35. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., & De Lacy Costello, B. (2012, June). The memory-conservation model of memristance. In Technical digest of frontiers in electronic materials (pp. 538–539). Nature Conference, Wiley-VCH.Google Scholar
  36. Gale, E. M., De Lacy Costello, B., & Adamatzky, A. (2012, November). The effect of electrode size on memristor properties: An experimental and theoretical study. In 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA 2012), Kuala Lumpur, Malaysia.Google Scholar
  37. Gale, E., Adamatzky, A., & De Lacy Costello, B. (2013). Slime mould memristors. BioNanoScience, 5(1), 1–8.Google Scholar
  38. Gale, E., Adamatzky, A., & De Lacy Costello, B. (Forthcoming). Drop-coated memristors.Google Scholar
  39. Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richer, C., Hacker, C., et al. (2009). A flexible solution-processed memrister. IEEE Electron Device Letters, 30, 706–708.CrossRefGoogle Scholar
  40. Giavitto, J.-L., Michel, O., & Spicher, A. (2013). Unconventional and nested computations in spatial computing. IJUC, 9(1–2), 71–95.Google Scholar
  41. Goodman, E. M. (1972). Axenic culture of myxamoebae of the myxomycete Physarum polycephalum. Journal of Bacteriology, 111(1), 242–247.Google Scholar
  42. Grebecki, A., & Cieslawska, M. (1978). Plasmodium of Physarum polycephalum as a synchronous contractile system. Cytobiologie, 17(2), 335–342.Google Scholar
  43. Howard, D., Gale, E., Bull, L., De Lacy Costello, B., & Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computation, 16, 711–729.Google Scholar
  44. Igarashi, Y., & Gorecki, J. (2011). Chemical diodes built with controlled excitable. IJUC, 7(3), 141–158.Google Scholar
  45. Janmey, P. A. (1998). The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiological Reviews, 78(3), 763–781.Google Scholar
  46. Jones, J. (2010). The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing, 6, 125–144.Google Scholar
  47. Jones, J. (2015). From pattern formation to material computation: Multi-agent modelling of Physarum polycephalum, Vol. 15. Springer.Google Scholar
  48. Jones, J., & Adamatzky, A. (2012). Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum. Bioinspiration and Biomimetics, 7(1), 016009.CrossRefGoogle Scholar
  49. Jones, J., & Adamatzky, A. (2015). Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould. IJUC, 11(1), 37–62.Google Scholar
  50. Kalogeiton, V. S., Papadopoulos, D. P., & Sirakoulis, G. C. (2014). Hey physarum! can you perform slam? International Journal of Unconventional Computing, 10(4), 271–293.Google Scholar
  51. Kalogeiton, V. S., Papadopoulos, D. P., Georgilas, I. P., Sirakoulis, G. C., & Adamatzky, A. I. (2015). Cellular automaton model of crowd evacuation inspired by slime mould. International Journal of General Systems, 44(3), 354–391.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Kessler, D. (1982). Plasmodial structure and motility. In H. C. Aldrich & J. W. Daniel (Eds.), Cell biology of Physarum and Didymium.Google Scholar
  53. Kirke, A., & Miranda, E. (Eds.). (2012). Computing for expressive music performance. Springer.Google Scholar
  54. Konkoli, Z. (2015). A perspective on putnam’s realizability theorem in the context of unconventional computation. IJUC, 11(1), 83–102.Google Scholar
  55. Mayne, R., & Adamatzky, A. (2015). Slime mould foraging behaviour as optically coupled logical operations. International Journal of General Systems, 44(3), 305–313.MathSciNetCrossRefzbMATHGoogle Scholar
  56. Mayne, R., Tsompanas, M.-A., Sirakoulis, G. C. H., & Adamatzky, A. (2015a). Towards a slime mould-fpga interface. Biomedical Engineering Letters, 5(1), 51–57.CrossRefGoogle Scholar
  57. Mayne, Richard, Adamatzky, Andrew, & Jones, Jeff. (2015b). On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Communicative and Integrative Biology, 8(4), e1059007.CrossRefGoogle Scholar
  58. Miranda, E. R., Bull, L., Gueguen, F., & Uroukov, I. S. (2009). Computer music meets unconventional computing: Towards sound synthesis with in vitro neuronal network. Computer Music, 33, 9–18.CrossRefGoogle Scholar
  59. Miranda, E., Adamatzky, A., & Jones, J. (2011). Sounds synthesis with slime mould of Physarum polycephalum. Journal of Bionic Engineering, 8(2), 107–113.Google Scholar
  60. Mohid, M., & Miller, J. F. (2015). Evolving solutions to computational problems using carbon nanotubes. IJUC, 11(3–4), 245–281.Google Scholar
  61. Morey, R. (1940). Upset in emotions. Journal of Social Psychology, 12, 355–356.CrossRefGoogle Scholar
  62. Nishiyama, Y., Gunji, Y.-P., & Adamatzky, A. (2013). Collision-based computing implemented by soldier crab swarms. IJPEDS, 28(1), 67–74.Google Scholar
  63. Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23(7), 881–886.Google Scholar
  64. Roy, P., Pachet, F., & Barbieri, G. (2001). Finite-length markov processes with constraints. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, pp. 635–641.Google Scholar
  65. Stephenson, S. L. S., & Steven, L. et al. (1994). Myxomycetes; a handbook of slime molds. Timber Press.Google Scholar
  66. Strukov, D. B., Snider, G. S., Stewart, D. R., & Stanley Williams, R. (2008). The missing memristor found. Nature, 453(7191), 80–83.Google Scholar
  67. Takagi, S., & Ueda, T. (2008). Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D: Nonlinear Phenomena, 237, 420–427.CrossRefGoogle Scholar
  68. Takamatsu, A., & Fujii, T. (2002). Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update, 10(1), 33–46.CrossRefGoogle Scholar
  69. Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., et al. (2015). A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chemical Science, 6(5), 2859–2868.CrossRefGoogle Scholar
  70. Tsompanas, M. A. I., & Sirakoulis, G. C. (2012). Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration & Biomimetics, 7(3), 036013.CrossRefGoogle Scholar
  71. Tsompanas, M. A. I., Sirakoulis, G. C., & Adamatzky, A. I. (2015). Evolving transport networks with cellular automata models inspired by slime mould. IEEE Transactions on Cybernetics, 45(9), 1887–1899.CrossRefGoogle Scholar
  72. Tsuda, S., & Jones, J. (2010). The emergence of synchronization behavior in Physarum polycephalum and its particle approximation. Biosystems, 103, 331–341.CrossRefGoogle Scholar
  73. Tsuda, S., Zauner, K.-P., & Gunji, Y.-P. (2006). Robot control: From silicon circuitry to cells. Biologically Inspired Approaches to Advanced Information Technology, 20–32.Google Scholar
  74. Uchida, A., Ito, Y., & Nakano, K. (2014). Accelerating ant colony optimisation for the travelling salesman problem on the GPU. IJPEDS, 29(4), 401–420.Google Scholar
  75. Von Neumann, John. (1966). Theory of self-reproducing automata. Champaign, IL, USA: University of Illinois Press.Google Scholar
  76. Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2014a). Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum polycephalum. Sensors and Actuators B: Chemical, 191, 844–853.CrossRefGoogle Scholar
  77. Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2014b). Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems, 124, 21–25.CrossRefGoogle Scholar
  78. Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2015). Transfer function of protoplasmic tubes of Physarum polycephalum. Biosystems, 128, 48–51.CrossRefGoogle Scholar
  79. Williams, S. (2012, June). Dynamics and applications of non-volatile and locally active memristors. Talk.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ella Gale
    • 1
  • Oliver Matthews
    • 2
  • Jeff Jones
    • 2
  • Richard Mayne
    • 2
  • Georgios Sirakoulis
    • 3
  • Andrew Adamatzky
    • 2
    Email author
  1. 1.School of Experimental PsychologyUniversity of BristolBristolUK
  2. 2.Unconventional Computing CentreUniversity of the West of EnglandBristolUK
  3. 3.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations