Nonlinear Problems in Piezoelectric Harvesters Under Magnetic Field

  • Erol Kurt
  • Yunus Uzun
Part of the Lecture Notes in Energy book series (LNEN, volume 37)


This chapter focuses on the nonlinear problems in the piezoelectric harvester systems under the magnetic field. In this manner, the chapter initially mentions an introductory section on the studies of piezoelectric harvester dynamics. After the introductory section, the basic properties of the piezoelectric systems and their energy harvester applications will be presented. Since the harvesters have a complicated structure under the magnetic field, the electromagnetic design, modeling and algebraic studies of a novel harvester study will be pointed out. After the presentation of a theoretical outline on the harvester systems, the experimental setups will be explained in detail. Thus, a complete picture of the problem will be produced in order to sustain a comparable study on the theory and experiment. The main dynamic quantities such as displacement and velocity of the vibrating piezoelectric layer as function of the system parameters will be explored. According to results, the effect of periodic magnetic flux can give varieties of responses from regular dynamics to chaotic one. Phase space constructions, Poincare sections and FFTs are evaluated depending on the parameter sets including the excitation frequency f, amplitude Uc of electromagnet and the distance d. It is proven that the periodic magnetic flux can exert high frequency velocity fluctuations nearby the minimal and maximal values of the velocity, whereas the situation differs for the position. Therefore it will be pointed out that the magnetic field mostly governs the velocity by yielding complicated vibrations. According to the detailed analyses, the FFTs prove the high frequency responses in addition to the main frequency. When f differs from the natural frequency of the system f 0, the responses become chaotic. It is proven that lower and higher frequency fluctuations in displacement and velocity, which are different from f 0 decrease the electrical power harvested by the piezoelectric pendulum. Indeed, it is remarkable to get a relation between the rms values of displacement/velocity and the harvested power according to the measurements. Thus this relation can be used to estimate the power output in harvester systems. The piezoelectric harvester generates much energy when f is closed to f 0 and the distance to the magnetic device should be closer in order to decrease the nonlinearities in displacement and velocity. The pendulum-like harvesters as the most preferable ones can be applied to many devices or units as a power source. The maximal power for these magnetically-excited structures can be estimated by the system parameters. At the end of the chapter, the recent techniques of maximal power point tracking (MPPT) and proposed controller units are explained for the piezoelectric harvester systems in order to optimize the harvested power.


Piezoelectric harvester Magnetic field Nonlinearity Attractor Maximal power point tracking 

Abbreviations and Acronyms


Micro-electro-mechanical system


Coulomb-damped resonant generator


Data acquisition


Finite element method


Fast Fourier transform


Maximal power point tracking


Root mean square


Single inductor dual output


Single-supply pre-biasing


Total harmonic distortion


Velocity-damped resonant generator



The supports from Gazi University Research Development Unit under Grant Nos. BAP 07/2010-01, BAP 07/2012-12, Turkey Ministry for EU Affairs—National Agency under Grant No. 2015-1-TR01-KA203-021342 and The Scientific and Technological Research Council of Turkey (TUBITAK) under grant EEEAG-114E017 are acknowledged.


  1. 1.
    Tufekcioglu E, Dogan A (2014) A flextensional piezo-composite structure for energy harvesting applications. Sens Actuators A Phys 216:355–363CrossRefGoogle Scholar
  2. 2.
    Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147:248–253CrossRefGoogle Scholar
  3. 3.
    Ferrari M, Ferrari V, Guizzetti M, Andò B, Baglio S, Trigona C (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A Phys 162:425–431CrossRefGoogle Scholar
  4. 4.
    Erturk A, Inman DJ (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065016 (14 pp)Google Scholar
  5. 5.
    Lin JH, Wu XM, Ren TL, Liu LT (2007) Modeling and simulation of piezoelectric MEMS energy harvesting device. Integr Ferroelectr 95:128–141CrossRefGoogle Scholar
  6. 6.
    Wang L, Yuan FG (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17:045009 (14 pp)Google Scholar
  7. 7.
    Poulin G, Sarraute E, Costa F (2004) Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system. Sens Actuators A Phys 116:461–471CrossRefGoogle Scholar
  8. 8.
    Rocha JG, Gonçalves LM, Rocha PF, Silva MP, Lanceros-Méndez S (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57:813–819CrossRefGoogle Scholar
  9. 9.
    Al-Ashtari W, Hunstig M, Hemsel T, Sextro W (2013) Enhanced energy harvesting using multiple piezoelectric elements: theory and experiments. Sens Actuators A Phys 200:138–146CrossRefGoogle Scholar
  10. 10.
    Muralt P, Marzencki M, Belgacema B, Calamea F, Basrourb S (2009) Vibration energy harvesting with PZT micro device. In: Proceedings of the eurosensors XXIII conference, pp 1191–1194Google Scholar
  11. 11.
    Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks. Springer, New York, pp 49–50Google Scholar
  12. 12.
    Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14:4755–4790CrossRefGoogle Scholar
  13. 13.
    Ward JK, Behrens S (2008) Adaptive learning algorithms for vibration energy harvesting. Smart Mater Struct 17:035025 (9 pp)Google Scholar
  14. 14.
    Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182Google Scholar
  15. 15.
    Cho JH, Richards RF, Bahr DF, Richards CD (2006) Efficiency of energy conversion by piezoelectrics. Appl Phys Lett 89:104107 (3 pp)Google Scholar
  16. 16.
    Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601 (4pp)Google Scholar
  17. 17.
    Uzun Y, Kurt E (2013) Power-vibration relation for a piezoelectric harvester under magnetic excitation. In: 13th international conference on electric power system, high voltages, electric mach, Chania, Crete Island, Greece, pp 59–64Google Scholar
  18. 18.
    Uzun Y, Kurt E, Kurt HH (2015) Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum. Sens Actuators A Phys 224:119–130CrossRefGoogle Scholar
  19. 19.
    Kurt E (2006) Nonlinear responses of a magnetoelastic beam in a step-pulsed magnetic field. Nonlinear Dynam 45:171–182MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tseng WY, Dugundji J (1970) Nonlinear vibrations of a beam under harmonic excitation. J Appl Mech 37:292–297CrossRefzbMATHGoogle Scholar
  21. 21.
    Tseng WY, Dugundji J (1971) Nonlinear vibrations of a buckled beam under harmonicexcitation. J Appl Mech 38:467–476CrossRefzbMATHGoogle Scholar
  22. 22.
    Poddar B, Moon FC, Mukherjee S (1988) Chaotic motion of an elastic–plastic beam. J Appl Mech 55:185–189CrossRefGoogle Scholar
  23. 23.
    Emam SA, Nayfeh AH (2004) Nonlinear responses of buckled beams tosubharmonic-resonance excitations. Nonlinear Dyn 35:105–122CrossRefzbMATHGoogle Scholar
  24. 24.
    Saymonds PS, Yu TX (1985) Counterintuitive behavior in a problem of elastic–plasticbeam dynamics. J Appl Mech 52:517–522CrossRefGoogle Scholar
  25. 25.
    Uzun Y, Demirbas S, Kurt E (2014) Implementation of a new contactless piezoelectric wind energy harvester to a wireless weather station. Elektron Elektrotech 20:35–39Google Scholar
  26. 26.
    Uzun Y, Kurt E (2012) Implementation and modeling of a piezoelastic pendulum under a harmonic magnetic excitation. In: 11th international conference on applications of electrical engineering, Athens, Greece, pp 1–6Google Scholar
  27. 27.
    Uzun Y, Kurt E (2013) The effect of periodic magnetic force on a piezoelectric energy harvester. Sens Actuators A Phys 192:58–68CrossRefGoogle Scholar
  28. 28.
    Bizon N, Oproescu M (2007) Power converters for energy generation systems (Convertoare de Putere utilizate in Sistemele de Generare a Energiei). Publishing House of the University of Piteşti, PiteştiGoogle Scholar
  29. 29.
    Bouzelata Y, Kurt E, Altın N, Chenni R (2015) Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms. Renew Sust Energ Rev 43:1114–1126CrossRefGoogle Scholar
  30. 30.
    Kurt E, Ciylan B, Taskan OO, Kurt HH (2014) Bifurcation analysis of a resistor-double inductor and double diode circuit and a comparison with a resistor-inductor-diode circuit in phase space and parametrical responses. Sci Iran 21:935–944Google Scholar
  31. 31.
    Linsay PS (1981) Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys Rev Lett 47:1349–1352CrossRefGoogle Scholar
  32. 32.
    Kurt E, Kasap R, Acar S (2003) Effects of periodic magnetic field to the dynamics of vibrating beam. J Math Comput Appl 9:275–284Google Scholar
  33. 33.
    Kurt E, Böyükata M, Güvenç ZB (2006) Lyapunov exponent as an indicator of phase transition in melting Pd13 clusters. Phys Scripta 74:353–361CrossRefGoogle Scholar
  34. 34.
    Kurt E, Uzun Y (2010) Design and bifurcation analysis of a piezoelectric energy harvester under a changeable magnetic field. In: 2nd international conference on nuclear and renewable energy resources, Ankara, Turkey, pp 877–884Google Scholar
  35. 35.
    Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulentchannel flow up to Re = 590. Phys Fluids 11:943–945CrossRefzbMATHGoogle Scholar
  36. 36.
    Morris DJ, Youngsman JM, Anderson MJ, Bahr DF (2008) A resonant frequency tunable extensional mode piezoelectric vibration harvesting mechanism. Smart Mater Struct 17:065021 (9 pp)Google Scholar
  37. 37.
    Ramond A, Ardila Rodríguez GA, Durou H, Jammes B, Rossi CA (2009) SIDO buck converter with ultra low power MPPT scheme for optimized vibrational energy harvesting and management. In: PowerMEMS, Washington DC, USA, pp 415–418Google Scholar
  38. 38.
    Kong N, Cochran T, Ha DS, Lin HC, Inman DJ (2010) A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In: 25th applied power electronics conference and exposition (APEC), CA, USA, pp 2154–2160Google Scholar
  39. 39.
    Elliott ADT, Mitcheson PD (2014) Piezoelectric energy harvester interface with real-time MPPT. J Phys Conf Ser 557:012125(5 pp)Google Scholar
  40. 40.
    Yi J, Su F, Lam YH, Ki WH, Tsui CY (2008) An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In: IEEE international symposium on circuits and systems, Seattle, WA, USA, pp 2570–2573Google Scholar
  41. 41.
    Simjee F, Chou PH (2006) Everlast: long-life, supercapacitor-operated wireless sensor node. In: Proceedings of the ISLPED, pp 197–202Google Scholar
  42. 42.
    Do XD, Han SK, Lee SG (2014) Optimization of piezoelectric energy harvesting systems by using a MPPT method. In: IEEE 5th international conference on communications and electronics, Danang, Vietnam, pp 309–312Google Scholar
  43. 43.
    Miller LM, Mitcheson PD, Halvorsen E, Wright PK (2012) Coulomb-damped resonant generators using piezoelectric transduction. Appl Phys Lett 100:233901(4 pp)Google Scholar
  44. 44.
    Booth AD (1951) A signed binary multiplication technique. Q J Mech Appl Math 4:236–240MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Technology Faculty, Department of Electrical and Electronics EngineeringGazi UniversityTeknikokullarTurkey
  2. 2.Faculty of Engineering, Department of Electrical and Electronics EngineeringAksaray UniversityAksarayTurkey

Personalised recommendations