Advertisement

Power Architectures and Power Conditioning Unit for Very Small Satellites

  • Sergiu Oprea
  • Constantin Radoi
  • Adriana Florescu
  • Andrei-Stefan Savu
  • Adrian-Ioan Lita
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 37)

Abstract

Space agencies all over the world are interested today in very small satellites because of their advantages compared to heavier satellites. This chapter starts with the general characteristics, Earth orbits, eclipses and current missions of very small satellites. It continues with a brief summary of the component parts of the electrical power system: the array of solar cells, batteries for space applications, 3 power architectures and 19 maximum power point tracker’s algorithms. Authors’ attention is mainly focused on designing, simulation and practical demonstration of a prototype with a flexible hybrid proposed architecture of the power conditioning unit for very small satellites, whose component blocks are the battery charge unit (BCU) including the dc–dc converter, the digital controller, the BCU sensors circuitry and the BCU prototype) and the battery charge/discharge monitor unit (BCDMU) including the microcontroller, the BCDMU sensors circuitry, the battery switch, the battery heater and the telemetry system.

Keywords

Very small satellites Earth orbits and eclipses Electrical power system Flexible power architectures Battery charger unit Battery charge/discharge monitor unit 

Abbreviations and Acronyms

BCDMU

Battery Charge/Discharge Monitor Unit

BCU

Battery Charger Unit

BDR

Battery Discharge Regulator

BFV

Best Fixed Voltage

BOL

(Battery’s) Beginning of Life

BU

Battery Unit

CCM

Continuous Current Mode

CMMR

Common Mode Rejection Ratio

COTS

Commercial-Off-The-Shelf

CU

Chargers Unit

DET

Direct Energy Transfer

DOD

Depth of Discharge

e.i.r.p.

equivalent isotropic radiated power

EOL

(Battery’s) End of Life

ESA

European Space Agency

GEO

Geosynchronous Earth Orbit

GSTP

General Support Technology Programme

GUI

Graphical User Interface

HEO

Highly Elliptical Orbit

IC

Integrated Circuit

IOD

In-Orbit Demonstration

IU

Isolation Unit

LEO

Low Earth Orbit

LRCM

Linear Reoriented Coordinates Method

MEO

Mid Earth Orbit

MPPT

Maximum Power Point Tracker

NGSO

Non-Geostationary Orbit

NTC

Negative Temperature Coefficient

OCC

One-Cycle Control MPPT

P&O

Perturb and Observe

PEC

Packet Error Check

PI

Proportional-Integral

POL/D

Point-Of-Load/Distribution

PV

Photovoltaic

PWM

Pulse Width Modulation

RCC

Ripple Correlation Control

S3R

Sequential Switching Shunt Regulator

SEPIC

Single-Ended Primary Inductor Converter

STAR

Space Technology and Advanced Research

TT&C

Telemetry, Tracking and Telecommand

Notes

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, Program for research Space Technology and Advanced Research - STAR, project number 80/29.11.2013.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Patel MR (2005) Spacecraft power systems. CRC Press, Boca RatonGoogle Scholar
  7. 7.
  8. 8.
    Martin L, Jones WH, Shiroma WA (2014) Small-satellite projects offer big rewards. IEEE Potentials 33(4):24–30CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Strain A (2010) User manual: CubeSat 1U electronic power system and batteries: CS-1UEPS2-NB/-10/-2. Clyde Space LtdGoogle Scholar
  11. 11.
  12. 12.
    Surampudi R, Hamilton T, Rapp D (2002) Solar cell and array technology for future space science missions, June 2002, NASA, pp 1–100Google Scholar
  13. 13.
    De Luca A (2011) Architectural design criteria for spacecraft solar arrays (Chap 8) in solar cells—thin-film technologies. InTech Publishing House, Vienna. ISBN 978-953-307-570-9Google Scholar
  14. 14.
    Colasanti S, Nesswetter H, Zimmermann CG, Lugli P (2014) Modeling and parametric simulation of triple junction solar cell for space applications. In: IEEE 40th photovoltaic specialist conference (PVSC 2014), pp 1784–1789Google Scholar
  15. 15.
    Pearson C, Thwaite C, Russel N (2005) Small cell lithium-ion batteries: the responsive solution for space energy storage. In: American institute of aeronautics and astronautic (AIAA) 3rd responsive space conference, 25–28 April 2005, Los Angeles, USAGoogle Scholar
  16. 16.
    Olsson D (1993) A power system design for a microsatellite. In: ESA/ESTeC, European space power conference, 23–27 August 1993, Graz, AustriaGoogle Scholar
  17. 17.
    Oprea S, Tanase MC, Florescu A (2012) PV charger system using a synchronous buck converter. In: Proceedings of SNET2012, 14 December 2012, Bucharest, Romania, vol 3(1), pp 328–333. ISSN 2067-4147Google Scholar
  18. 18.
    Castaner L, Silvestre S (2002) Modelling photovoltaic systems using PSpice. Wiley, New York. ISBN 978-0-470-84527-1CrossRefGoogle Scholar
  19. 19.
    Esram T, Chapman JR (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449 ISSN 0885–8969CrossRefGoogle Scholar
  20. 20.
    Femia N, Petrone G, Spagnuolo G, Vitelli M (2012) Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. CRC Press, Boca Raton. ISBN 9781466506909CrossRefzbMATHGoogle Scholar
  21. 21.
    Sera D, Mathe L, Kerekes T, Spataru SV, Teodorescu R (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovoltaics 3(3):1070–1078CrossRefGoogle Scholar
  22. 22.
    Demirel S, Sanli E, Gokten M, Yagli AF (2012) Properties and performance comparison of electrical power sub-system on TUSAT communication satellite. In: 2012 IEEE first AESS European conference on satellite communications (ESTEL 2012), 2–5 October 2012, Italy, Rome. Print ISBN:978-1-4673-4687-0Google Scholar
  23. 23.
    Erickson RW, Maksimovic D (2001) Fundamentals of power electronics, 2nd edn. Springer, New York. ISBN 13: 978-1475705591Google Scholar
  24. 24.
    Oprea S, Rosu-Hamzescu M, Radoi C (2014) Implementation of simple MPPT algorithms using low-cost 8-bit microcontrollers. In: IEEE conference on electronics, computers and artificial intelligence (ECAI 2014), 23–25 October 2014, pp 31–34Google Scholar
  25. 25.
    Rosu-Hamzescu M, Oprea S (2012) High-power CC/CV battery charger using an inverse SEPIC (Zeta) topology. Microchip Technology Inc., AN1467, pp 1–16Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergiu Oprea
    • 1
  • Constantin Radoi
    • 1
  • Adriana Florescu
    • 1
  • Andrei-Stefan Savu
    • 1
  • Adrian-Ioan Lita
    • 1
  1. 1.University POLITEHNICA of BucharestBucharestRomania

Personalised recommendations