Applied Metagenomics for Biofuel Development and Environmental Sustainability

  • Antônio Djalma Nunes Ferraz Júnior
  • André Ricardo L. Damásio
  • Douglas Antonio Alvaredo Paixão
  • Thabata Maria Alvarez
  • Fabio Marcio Squina
Chapter

Abstract

Traditional ethanol from sugarcane, also known as first generation ethanol (1G), is one of the greatest technological achievements in the modern history of Brazil. Second-generation bioethanol (2G) from sugarcane bagasse is considered a rational and sustainable alternative to the expansion of the sugarcane industry. However, 2G technology is not yet as robust as 1G ethanol. In this chapter, metagenomics approaches are contextualized within the bioethanol production chain. A comprehensive description is presented on novel carbohydrate-active enzymes (CAZymes) discovered from uncultivated microorganisms with potential utilization in biomass conversion strategies. In addition, this chapter also focuses on the potential of the development of microbial communities to convert residual streams derived from ethanol into valuable products such as biogas and biofertilizer. Finally, a case study is presented that describes the application of large-scale sequencing to assess microbial communities from anaerobic reactors involved in hydrogen production.

Keywords

Biofuels Metagenomics Enzymes Anaerobic digestion 

References

  1. Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312. doi:10.1016/j.biortech.2011.01.002 CrossRefPubMedGoogle Scholar
  2. Alvarez TM, Goldbeck R, dos Santos CR et al (2013a) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One 8:e70014. doi:10.1371/journal.pone.0070014 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez TM, Paiva JH, Ruiz DM et al (2013b) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8:e83635. doi:10.1371/journal.pone.0083635 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  5. Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–136. doi:10.3390/v6010106 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bastien G, Arnal G, Bozonnet S et al (2013) Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnol Biofuels 6:78. doi:10.1186/1754-6834-6-78 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berghem LE, Pettersson LG, Axio-Fredriksson UB (1976) The mechanism of enzymatic cellulose degradation. Purification and some properties of two different 1,4beta-glucan glucanohydrolases from Trichoderma viride. Eur J Biochem 61:621–630CrossRefPubMedGoogle Scholar
  8. Berlemont R, Delsaute M, Pipers D et al (2009) Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J 3:1070–1081. doi:10.1038/ismej.2009.48 CrossRefPubMedGoogle Scholar
  9. Bertrand H, Poly F, Van VT et al (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Methods 62:1–11. doi:10.1016/j.mimet.2005.01.003
  10. Boussarsar H, Rogé B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100:6537–6542. doi:10.1016/j.biortech.2009.07.019 CrossRefPubMedGoogle Scholar
  11. Brennan Y, Callen WN, Christoffersen L et al (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70:3609–3617. doi:10.1128/AEM.70.6.3609-3617.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489. doi:10.1016/j.tibtech.2008.05.004 CrossRefPubMedGoogle Scholar
  13. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941. doi:10.1016/j.bbadis.2014.06.015 CrossRefPubMedGoogle Scholar
  14. Carpita NC, McCann MC (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–109Google Scholar
  15. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478. doi:10.1038/nrmicro1160 CrossRefPubMedGoogle Scholar
  16. De Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35. doi:10.1007/s12155-013-9366-8 CrossRefGoogle Scholar
  17. De Souza AP, Leite DCC, Pattathil S et al (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579. doi:10.1007/s12155-012-9268-1 CrossRefGoogle Scholar
  18. Dröge J, Mchardy AC (2012) Taxonomic binning of metagenome samples generated by next-generation sequencing technologies. Brief Bioinform 13:646–655. doi:10.1093/bib/bbs031 CrossRefPubMedGoogle Scholar
  19. Du Toit PJ, Olivier SP, van Biljon PL (1984) Sugar cane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and amino acid composition. Biotechnol Bioeng 26:1071–1078. doi:10.1002/bit.260260909 CrossRefPubMedGoogle Scholar
  20. Duan CJ, Xian L, Zhao GC et al (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256. doi:10.1111/j.1365-2672.2009.04202.x CrossRefPubMedGoogle Scholar
  21. El-Metwally S, Ouda MO, Helmy M (2014) Next generation sequencing technologies and challenges in sequence assembly. Springer-Verlag, New YorkCrossRefGoogle Scholar
  22. Elend C, Schmeisser C, Leggewie C et al (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72:3637–3645. doi:10.1128/AEM.72.5.3637-3645.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Entcheva P, Liebl W, Johann A et al (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67:89–99. doi:10.1128/AEM.67.1.89-99.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fang Z, Li T, Wang Q et al (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89:1103–1110. doi:10.1007/s00253-010-2934-3 CrossRefPubMedGoogle Scholar
  25. Feng Y, Duan CJ, Pang H et al (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328. doi:10.1007/s00253-006-0820-9 CrossRefPubMedGoogle Scholar
  26. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015a) High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol 186:81–88. doi:10.1016/j.biortech.2015.03.035 CrossRefPubMedGoogle Scholar
  27. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015b) Mesophilic hydrogen production in acidogenic packed-bed reactors (apbr) using raw sugarcane vinasse as substrate: influence of support materials. Anaerobe 34:94–105. doi:10.1016/j.anaerobe.2015.04.008 CrossRefGoogle Scholar
  28. Ferraz Júnior ADN, Koyama MH, de Araújo Júnior MM, Zaiat M (2016) Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew Energy 89:245–252. doi:10.1016/j.renene.2015.11.064
  29. Ferraz Júnior ADN, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy 39:16852–16862. doi:10.1016/j.ijhydene.2014.08.017 CrossRefGoogle Scholar
  30. Gabor EM, De Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163. doi:10.1016/S0168-6496(02)00462-2 CrossRefPubMedGoogle Scholar
  31. Gabor EM, De Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6:948–958. doi:10.1111/j.1462-2920.2004.00643.x CrossRefPubMedGoogle Scholar
  32. Goldemberg J, Coelho ST, Nastari PM, Lucon O (2004) Ethanol learning curve—the Brazilian experience. Biomass Bioenergy 26:301–304. doi:10.1016/S0961-9534(03)00125-9 CrossRefGoogle Scholar
  33. Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11–e11. doi:10.1038/jid.2013.248 CrossRefPubMedGoogle Scholar
  34. GranBio (2015) GranBio. http://www.granbio.com.br/. Accessed 21 Feb 2015
  35. Grant S, Sorokin DY, Grant WD et al (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8:421–429. doi:10.1007/s00792-004-0402-7 CrossRefPubMedGoogle Scholar
  36. Groposo Silveira CJ, Melo Santa Anna LM, Machado de Castro A, et al (2012) Method for producing energy-rich gases from lignocellulosic material streamsGoogle Scholar
  37. Gruppen H, Hamer RJ, Voragen AGJ (1992) Water unextractable cell wall material from wheat flour. 2. Fractionation of alkali extracted polymers and comparison with water extractable arabinoxylans. J Cereal Sci 16:53–67CrossRefGoogle Scholar
  38. Han Q, Liu N, Robinson H et al (2013) Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Biotechnol Bioeng 110:3093–3103. doi:10.1002/bit.24982 CrossRefPubMedGoogle Scholar
  39. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. doi:10.1128/MMBR.68.4.669-685.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249. doi:10.1016/S1074-5521(98)90108-9 CrossRefPubMedGoogle Scholar
  41. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hess M, Sczyrba A, Egan R et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. doi:10.1126/science.1200387 CrossRefPubMedGoogle Scholar
  43. Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016 CrossRefPubMedGoogle Scholar
  44. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711PubMedPubMedCentralGoogle Scholar
  45. Hu Y, Zhang G, Li A et al (2008) Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 80:823–830. doi:10.1007/s00253-008-1636-6
  46. Jeong YS, Na HB, Kim SK et al (2012) Characterization of xyn10J, a novel family 10 xylanase from a compost metagenomic library. Appl Biochem Biotechnol 166:1328–1339. doi:10.1007/s12010-011-9520-8
  47. Jo JH, Jeon CO, Lee DS, Park JM (2007) Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J Biotechnol 131:300–308. doi:10.1016/j.jbiotec.2007.07.492 CrossRefPubMedGoogle Scholar
  48. Khademi S, Zhang D, Swanson SM et al (2002) Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride. Acta Crystallogr D Biol Crystallogr 58:660–667CrossRefPubMedGoogle Scholar
  49. Kim S-Y, Oh D-B, Kwon O (2014) Characterization of a lichenase isolated from soil metagenome. J Microbiol Biotechnol 24:1699–1706. doi:10.4014/jmb.1406.06012 CrossRefPubMedGoogle Scholar
  50. Knietsch A, Waschkowitz T, Bowien S et al (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416. doi:10.1128/AEM.69.3.1408-1416.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int J Hydrogen Energy 39:6407–6418. doi:10.1016/j.ijhydene.2014.02.058 CrossRefGoogle Scholar
  52. Lee CC, Kibblewhite-Accinelli RE, Wagschal K et al (2006) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300. doi:10.1007/s00792-005-0499-3 CrossRefPubMedGoogle Scholar
  53. Lee CM, Lee YS, Seo SH et al (2014) Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. J Microbiol Biotechnol 24:1196–1206. doi:10.4014/jmb.1405.05001
  54. Leff LG, Dana JR, McArthur JV, Shimkets LJ (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61:1141–1143 7793915PubMedPubMedCentralGoogle Scholar
  55. Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41. doi:10.1186/1754-6834-6-41 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Levasseur A, Piumi F, Coutinho PM et al (2008) FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 45:638–645CrossRefPubMedGoogle Scholar
  57. Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39CrossRefGoogle Scholar
  58. Li L-L, McCorkle SR, Monchy S et al (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10. doi:10.1186/1754-6834-2-10 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi:10.1038/nature14098 CrossRefPubMedGoogle Scholar
  60. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.1093/nar/gkt1178 CrossRefPubMedGoogle Scholar
  61. Mackelprang R, Waldrop MP, DeAngelis KM et al (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371. doi:10.1038/nature10576 CrossRefPubMedGoogle Scholar
  62. MacLean D, Jones JDG, Studholme DJ (2009) Application of “next-generation” sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296. doi:10.1038/nrmicro2088 PubMedGoogle Scholar
  63. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. doi:10.1016/j.tig.2007.12.007 CrossRefPubMedGoogle Scholar
  64. Martin M, Biver S, Steels S et al (2014) Identification and characterization of a halotolerant, cold-active marine endo-β-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota. Appl Environ Microbiol 80:4958–4967. doi:10.1128/AEM.01194-14 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mhuantong W, Charoensawan V, Kanokratana P et al (2015) Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8:16. doi:10.1186/s13068-015-0200-8 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Milanez A, Nyko D, Garcia J, Dos Reis BS (2012) O déficit de produção de etanol no Brasil entre 2012 e 2015: determinantes, consequências e sugestões de política. BNDES Setorial 35:277–302Google Scholar
  67. Mota VT, Santos FS, Amaral MCS (2013) Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance. Bioresour Technol 146:494–503. doi:10.1016/j.biortech.2013.07.110 CrossRefPubMedGoogle Scholar
  68. Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47:2228–2237. doi:10.2135/cropsci2007.03.0166 CrossRefGoogle Scholar
  69. Nichols D, Cahoon N, Trakhtenberg EM et al (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450. doi:10.1128/AEM.01754-09 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Niemi RM, Heiskanen I, Heine R, Rapala J (2009) Previously uncultured beta-Proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Res 43:5075–5086. doi:10.1016/j.watres.2009.08.037 CrossRefPubMedGoogle Scholar
  71. Noike T (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrogen Energy 27:1367–1371. doi:10.1016/S0360-3199(02)00120-9 CrossRefGoogle Scholar
  72. Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66. doi:10.1016/0167-7012(87)90025-X CrossRefGoogle Scholar
  73. Ohnishi A, Bando Y, Fujimoto N, Suzuki M (2010) Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora. Int J Hydrogen Energy 35:8544–8553. doi:10.1016/j.ijhydene.2010.05.113 CrossRefGoogle Scholar
  74. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55CrossRefGoogle Scholar
  75. Pandhal J, Noirel J (2014) Synthetic microbial ecosystems for biotechnology. Biotechnol Lett 36:1141–1151. doi:10.1007/s10529-014-1480-y CrossRefPubMedGoogle Scholar
  76. Rabelo SC (2010) Avaliação E Otimização De Pré-Tratamentos E Hidrólise Enzimática Do Bagaço De Cana-De-Açúcar Para a Produção De Etanol De Segunda Geração. p 447Google Scholar
  77. Raízen (2015) Raízen. http://www.raizen.com.br/. Accessed 10 Jan 2015
  78. Rees HC, Grant S, Jones B et al (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421. doi:10.1007/s00792-003-0339-2 CrossRefPubMedGoogle Scholar
  79. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, HA E (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491CrossRefPubMedGoogle Scholar
  80. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467. doi:10.1073/pnas.74.12.5463 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Santos SC, Ferreira Rosa PR, Sakamoto IK et al (2014) Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. Int J Hydrogen Energy 39:9000–9011. doi:10.1016/j.ijhydene.2014.03.241
  82. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. doi:10.1016/S0958-1669(03)00067-3 CrossRefPubMedGoogle Scholar
  83. Segato F, Damásio AR, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by aspergilli. Microbiol Mol Bio Rev 78:588–613Google Scholar
  84. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161. doi:10.1128/AEM.02345-10 CrossRefPubMedGoogle Scholar
  85. Singh R, Dhawan S, Singh K, Kaur J (2012) Cloning, expression and characterization of a metagenome derived thermoactive/thermostable pectinase. Mol Biol Rep 39:8353–8361. doi:10.1007/s11033-012-1685-x CrossRefPubMedGoogle Scholar
  86. Souza ME, Fuzaro G, Polegato AR (1992) Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci Technol 25:213–222Google Scholar
  87. Staley A, Konopka JT (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346CrossRefPubMedGoogle Scholar
  88. Steffan RJ, Goksøyr J, AK B, RM A (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915PubMedPubMedCentralGoogle Scholar
  89. Stroobants A, Portetelle D, Vandenbol M (2014) New carbohydrate-active enzymes identified by screening two metagenomic libraries derived from the soil of a winter wheat field. J Appl Microbiol 117:1045–1055. doi:10.1111/jam.12597 CrossRefPubMedGoogle Scholar
  90. Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263. doi:10.3390/catal2020244 CrossRefGoogle Scholar
  91. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814. doi:10.1038/nrg1709 CrossRefPubMedGoogle Scholar
  92. Tringe SG, von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557. doi:10.1126/science.1107851 CrossRefPubMedGoogle Scholar
  93. Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43. doi:10.1038/nature02340 CrossRefPubMedGoogle Scholar
  94. van der Lelie D, Taghavi S, McCorkle SM et al (2012) The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS One 7:e36740. doi:10.1371/journal.pone.0036740 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi:10.1126/science.1093857 CrossRefPubMedGoogle Scholar
  96. Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459. doi:10.1371/journal.pone.0052459 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. doi:10.1016/j.jbiotec.2006.02.011 CrossRefPubMedGoogle Scholar
  98. Xiang L, Li A, Tian C et al (2014) Identification and characterization of a new acid-stable endoglucanase from a metagenomic library. Protein Expr Purif 102:20–26. doi:10.1016/j.pep.2014.07.009
  99. Yun J, Kang S, Park S et al (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235. doi:10.1128/AEM.70.12.7229-7235.2004

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antônio Djalma Nunes Ferraz Júnior
    • 1
    • 2
  • André Ricardo L. Damásio
    • 3
    • 4
  • Douglas Antonio Alvaredo Paixão
    • 1
    • 2
  • Thabata Maria Alvarez
    • 1
    • 2
  • Fabio Marcio Squina
    • 1
    • 2
  1. 1.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  2. 2.Professional Master in Industrial BiotechnologyPositivo UniversityCampinasBrazil
  3. 3.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  4. 4.Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil

Personalised recommendations