Towards a General Array Database Benchmark: Measuring Storage Access

  • George Merticariu
  • Dimitar Misev
  • Peter BaumannEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10044)


Array databases have set out to close an important gap in data management, as multi-dimensional arrays play a key role in science and engineering data and beyond. Even more, arrays regularly contribute to the “Big Data” deluge, such as satellite images, climate simulation output, medical image modalities, cosmological simulation data, and datacubes in statistics. Array databases have proven advantageous in flexible access to massive arrays, and an increasing number of research prototypes is emerging. With the advent of more implementations a systematic comparison becomes a worthwhile endeavor.

In this paper, we present a systematic benchmark of the storage access component of an Array DBMS. It is designed in a way that comparable results are produced regardless of any specific architecture and tuning. We apply this benchmark, which is available in the public domain, to three main proponents: rasdaman, SciQL, and SciDB. We present the benchmark and its design rationales, show the benchmark results, and comment on them.


Main Memory Retrieval Time Query Window Sparse Array Size Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baumann, P.: Management of multidimensional discrete data. VLDB J. 3(4), 401–444 (1994)CrossRefGoogle Scholar
  2. 2.
    Baumann, P.: A database array algebra for spatio-temporal data and beyond. In: Pinter, R.Y., Tsur, S. (eds.) NGITS 1999. LNCS, vol. 1649, pp. 76–93. Springer, Heidelberg (1999). doi: 10.1007/3-540-48521-X_7 CrossRefGoogle Scholar
  3. 3.
    Baumann, P.: Array databases and raster data management. In: Oezsu, T., Liu, L. (eds.) Encyclopedia of Database Systems. Springer (2009)Google Scholar
  4. 4.
    Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional database system rasdaman. In: ACM SIGMOD Record, vol. 27, pp. 575–577. ACM (1998)Google Scholar
  5. 5.
    Baumann, P., Feyzabadi, S., Jucovschi, C.: Putting pixels, in place: a storage layout language for scientific data. In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 194–201, December 2010Google Scholar
  6. 6.
    Baumann, P., Holsten, S.: A comparative analysis of array models for databases. In: Kim, T., Adeli, H., Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, K., Mariyam, S., Song, X. (eds.) FGIT 2011. CCIS, vol. 258, pp. 80–89. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-27157-1_9 CrossRefGoogle Scholar
  7. 7.
    Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., Bigagli, L., Boldrini, E., Bruno, R., Calanducci, A., Campalani, P., Clement, O., Dumitru, A., Grant, M., Herzig, P., Kakaletris, K., Laxton, L., Koltsida, P., Lipskoch, K., Mahdiraji, A., Mantovani, S., Merticariu, V., Messina, A., Misev, D., Natali, S., Nativi, S., Oosthoek, J., Passmore, J., Pappalardo, M., Rossi, A., Rundo, F., Sen, M., Sorbera, V., Sullivan, D., Torrisi, M., Trovato, L., Veratelli, M., Wagner, S.: Big data analytics for earth sciences: the earthserver approach. Int. J. Digit. Earth 9, 3–29 (2015)Google Scholar
  8. 8.
    Baumann, P., Stamerjohanns, H.: Benchmarking large arrays in databases. In: Proceedings of the Workshop on Big Data Benchmarking, pp. 94–102, December 2012Google Scholar
  9. 9.
    Baumann, P., Yu, J., Misev, D., Lipskoch, K., Beccati, A., Campalani, P., Systems, G.I.: Preparing array analytics for the data Tsunami. In: Trends and Technologies. CRC Press (2014)Google Scholar
  10. 10.
    Benkner, S.: Hpf+: high performance fortran for advanced scientific and engineering applications. Future Gener. Comput. Syst. 15(3), 381–391 (1999)CrossRefGoogle Scholar
  11. 11.
    Cheng, Y., Rusu, F.: Astronomical data processing in EXTASCID. In: Proceedings of the 25th International Conference on Scientific, Statistical Database Management, pp. 47:1–47:4. ACM (2013)Google Scholar
  12. 12.
    Cheng, Y., Rusu, F.: Formal representation of the SS-DB benchmark and experimental evaluation in EXTASCID. Distributed and Parallel Databases, pp. 1–41 (2013)Google Scholar
  13. 13.
    Colliat, G.: OLAP, relational, and multidimensional database systems. SIGMOD Rec. 25(3), 64–69 (1996)CrossRefGoogle Scholar
  14. 14.
    Cornillon, P., Gallagher, J., Sgouros, T.: OPeNDAP: accessing data in a distributed, heterogeneous environment. Data Sci. J. 2(5), 164–174 (2003)CrossRefGoogle Scholar
  15. 15.
    T. P. Council. Tpc benchmark for decision support (tpc-ds). Accessed 31 Jan 2016Google Scholar
  16. 16.
    Cudre-Mauroux, P., Kimura, H., Lim, K.-T., Rogers, J., Madden, S., Stonebraker, M., Zdonik, S.B., Brown, P.G.: Ss-db: a standard science dbms benchmark. In: Proceedings of the XLDB Workshop (2010)Google Scholar
  17. 17.
    Dumitru, A., Merticariu, V., Baumann, P.: Exploring cloud opportunities from an array database perspective. In: Proceedings of the ACM SIGMOD Workshop on Data Analytics in the Cloud (DanaC 2014), pp. 1–4, 22–27 June 2014Google Scholar
  18. 18.
    Furtado, P., Baumann, P.: Storage of multidimensional arrays based on arbitrary tiling. In: Proceedings of the 15th International Conference on Data Engineering, pp. 480–489. IEEE (1999)Google Scholar
  19. 19.
    Gray, J., Liu, D.T., Nieto-Santisteban, M.A., Szalay, A.S., Heber, G., DeWitt, D.: Management in the coming decade. ACM SIGMOD Rec. 34(4), 35–41 (2005). also as MSR-TR-2005-10Google Scholar
  20. 20.
    ISO. Information Technology - Database Language SQL. Standard No. ISO, IEC 9075: 1999, International Organization for Standardization (ISO) (1999)Google Scholar
  21. 21.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. John Wiley & Sons Inc., New York (2002)Google Scholar
  22. 22.
    Merticariu, G., Misev, D., Baumann, P.: ADBMS Storage Benchmark Framework (2015). Accessed 31 Jan 2016
  23. 23.
    Misev, D., Baumann, P.: Extending the SQL array concept to support scientific analytics. In: Conference on Scientific and Statistical Database Management, SSDBM 2014, Aalborg, Denmark, June 2014Google Scholar
  24. 24.
    MonetDB. MonetDB branches (2015). Accessed 31 Jan 2016
  25. 25.
    Narasimhalu, A.D., Kankanhalli, M.S., Wu, J.: Benchmarking multimedia databases. Multimedia Tools Appl. 4, 333–356 (1990)CrossRefGoogle Scholar
  26. 26.
    n.n. SciDB. Accessed 31 Jan 2016
  27. 27.
    n.n. Tiledb (2015). Accessed 01 Jan 2016
  28. 28.
    Obe, R., Hsu, L.: PostGIS in Action. Manning Pubs. (2011)Google Scholar
  29. 29.
    Oracle. Oracle Database Online Documentation 12c Release 1 (12.1) - Spatial and Graph GeoRaster Developer’s Guide (2014)Google Scholar
  30. 30.
    Otoo, E.J., Rotem, D., Seshadri, S.: Optimal chunking of large multidimensional arrays for data warehousing. In: Proceedings of the ACM 10th International Workshop on Data Warehousing and OLAP, DOLAP 2007, pp. 25–32. ACM, New York (2007)Google Scholar
  31. 31.
    Paradigm 4 Inc., SciDB Reference Manual: Community and Enterprise Editions, 2015. Accessed 31 Jan 2016Google Scholar
  32. 32.
    Pisarev, A., Poustelnikova, E., Samsonova, M., Baumann, P.: Mooshka: a system for the management of multidimensional gene expression data in situ. Inf. Syst. 28(4), 269–285 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Rasdaman. The rasdaman Raster Array Database. Accessed 28 Feb 2015
  34. 34.
    Rasdaman. rasdaman Query Language Guide, 9.2nd edn. (2016)Google Scholar
  35. 35.
    Rusu, F., Cheng, Y: A survey on array storage, query languages, systems. arXiv preprint arXiv: 1302.0103 (2013)
  36. 36.
    Sarawagi, S., Stonebraker, M.: Efficient organization of large multidimensional arrays. In: Proceedings of the 10th International Conference on Data Engineering, pp. 328–336. IEEE Computer Society, Washington, DC (1994)Google Scholar
  37. 37.
    Soroush, E., Balazinska, M., Wang, D., ArrayStore: a storage manager for complex parallel array processing. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 253–264. ACM, New York (2011)Google Scholar
  38. 38.
    Stancu-Mara, S., Baumann, P.: A comparative benchmark of large objects in relational databases. In: Proceedings of the International Symposium on Database Engineering & #38; Applications, IDEAS 2008, pp. 277–284. ACM, New York (2008)Google Scholar
  39. 39.
    Stonebraker, M., Brown, P., Zhang, D., Becla, J.: SciDB: a database management system for applications with complex analytics. Comput. Sci. Eng. 15(3), 54–62 (2013)CrossRefGoogle Scholar
  40. 40.
    Szépkúti, I.: Multidimensional or Relational? How to Organize an On-line Analytical Processing Database. arXiv preprint arXiv:1103.3863, March 2011
  41. 41.
    Teradata Corporation. Teradata Database, Tools and Utilities Release 13.10 (2013)Google Scholar
  42. 42.
    Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD Rec. 28(4), 64–69 (1999)CrossRefGoogle Scholar
  43. 43.
    Widmann, N., Baumann, P.: Efficient execution of operations in a DBMS for multidimensional arrays. In: Proceedings of the Tenth International Conference on Scientific and Statistical Database Management, pp. 155–165. IEEE (1998)Google Scholar
  44. 44.
    Wieruch, R.: Mongodb: Avoid large arrays - benchmark (2014). Accessed 31 Jan 2016
  45. 45.
    Zhang, Y., Kersten, M.L., Ivanova, M., Nes, N.: SciQL, bridging the gap between science and relational DBMS. In: IDEAS, pp. 124–133. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • George Merticariu
    • 1
  • Dimitar Misev
    • 2
  • Peter Baumann
    • 1
    Email author
  1. 1.Jacobs University BremenBremenGermany
  2. 2.rasdaman GmbHBremenGermany

Personalised recommendations