Skip to main content

N2-Fixing Cyanobacterial Systems as Biofertilizer

  • Chapter
  • First Online:

Abstract

Soil and water surfaces, as well as plant surfaces and tissues are the known locations that harbor free-living phototrophic N2-fixing cyanobacteria. These organisms are known to contribute substantial amounts of fixed nitrogen (20–30 kg N ha−1annually). In continents where rice is the prime crop for majority of the population (amounting to over 40 % of world’s population), these organisms assume great importance. Two third of the total of 180 million tons of fixed nitrogen that gets added to the earth’s surface globally, comes from biological activities mainly contributed by these and other microbes. Rice field ecosystems are ideal for cyanobacterial growth as they provide optimum growth conditions. Azolla-Anabaena symbiotic association, another cyanobacterial system has been exploited as a biofertilizer in many Asian countries. This symbiosis is very important agronomically because its contribution has been estimated to be ~600 kg N ha−1. With the adverse consequences of chemical agriculture, focus on nitrogen enrichment has shifted again to biological nitrogen fixation, especially towards both free-living and symbiotic cyanobacteria. During past few decades, research studies have yielded a large quantity of information on cyanobacterial nitrogen fixation from isolation, molecular understanding and manipulations to large-scale production for agriculture. Substantial research studies have also been devoted towards creating and understanding the artificial associations of cyanobacteria with crop plants. In this chapter, various N2-fixing cyanobacterial systems in light of their use as biofertilizers are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams DG, Duggan PS (2008) Cyanobacteria-bryophyte symbioses. J Exp Bot 59(5):1047–1058

    Article  CAS  Google Scholar 

  • Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A (2013) Cyanobacterial-plant symbioses. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thomson F (eds) The Prokaryotes, vol 11. Springer, Heidelberg, pp 359–400

    Chapter  Google Scholar 

  • Ahmad M, Winter A (1968) Studies on the hormonal relationships of algae in pure culture. Planta 81(1):16–27

    Article  CAS  Google Scholar 

  • Ahmed M, Stal L, Hasnain S (2010) Association of non-heterocystous cyanobacteria with crop plants. Plant Soil 336(1–2):363–375

    Article  CAS  Google Scholar 

  • Akoijam C, Singh A, Rai A (2012) Characterization of free-living cyanobacterial strains and their competence to colonize rice roots. Biol Fertil Soils 48(6):679–687

    Article  Google Scholar 

  • Alimagno BV, Yoshida T (1977) In situ acetylene-ethylene assay of biological nitrogen fixation in lowland rice soils. Plant Soil 47(1):239–244

    Article  CAS  Google Scholar 

  • Al-Mousawi AHA, Whitton BA (1983) Influence of environmental factors on algae in rice-field soil from the Iraqi marshes. Arab Gulf J Sci Res 1:237–253

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  Google Scholar 

  • Ashton PJ (1974) The effect of some environmental factors on the growth of Azolla filiculoides Lam. In: EMVZ B (ed) Orange river progress report. Institute for Environmental Sciences, University of the Orange Freestate, Bloemfontein, pp 123–138

    Google Scholar 

  • Babu S, Prasanna R, Bidyarani N, Singh R (2015) Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol 27(1):327–338

    Article  CAS  Google Scholar 

  • Becker S, Singh AK, Postius C, Boger P, Ernst A (2004) Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance. FEMS Microbiol Ecol 49:181–190

    Article  CAS  Google Scholar 

  • Becking JH (1976) Contribution of plant-algal associations. In: Newton WE, Nyman CJ (eds) Proceedings of the 1st international symposium on nitrogen fixation. Washington State University, Press Pullman, pp 556–580

    Google Scholar 

  • Belnap J, Harper KT (1995) Influence of crypto biotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Res Rehabil 9(2):107–115

    Article  CAS  Google Scholar 

  • Bergman B, Rai AN, Johannson C, Soderback E (1992) Cyanobacterial-plant symbioses. Symbiosis 14:61–81

    Google Scholar 

  • Braun-Howland EB, Nierzwicki-Bauer SA (1990) Azolla-Anabaena symbiosis: biochemistry, physiology, ultrastructure, and molecular biology. In: Rai N (ed) CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, pp 161–171

    Google Scholar 

  • Campbell EL, Meeks JC (1989) Characteristics of Hormogonia Formation by Symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or its extracellular products. Appl Environ Microbiol 55(1):125–131

    CAS  Google Scholar 

  • Chu LC (1979) Use of Azolla in rice production in China. In: Nitrogen and rice symposium proceedings. IRRI, Los Baflos, pp 375–394

    Google Scholar 

  • Das SC, Mandal B, Mandal LN (1991) Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils. Plant Soil 138(1):75–84

    Article  CAS  Google Scholar 

  • De PK (1939) The role of blue-green algae in nitrogen fixation in rice-fields. Proc R Soc Lond Ser B Biol Sci 846:121–139

    Article  Google Scholar 

  • De PK, Sulaiman M (1950) Influence of algal growth in the rice fields on the yield of crop. Ind J Agric Sci 20:327–342

    Google Scholar 

  • De PK, Biswas NRD (1952) Fixation of nitrogen in rice soils in the dry period. Ind J Agric Sci 22:375–388

    CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta, vol 686. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Dey T (1999) Induction and characterization of Azollae-Anabaena symbiotic N2 fixing mutants and their assessment in rice (Oryza sativa). Banaras Hindu University, Varanasi, pp 1–23

    Google Scholar 

  • Dommergues YR, Diem HG, Watanabe I (1986) Azolla-Anabaena symbiosis, its physiology and use in tropical agriculture. In: Dommergues YR, Diem HG (eds) Microbiology of tropical soils and plant productivity, Developments in plant and soil sciences, vol 5. Springer, Dordrecht, pp 169–185

    Google Scholar 

  • Duggan PS, Gottardello P, Adams DG (2007) Molecular analysis of genes involved in pilus biogenesis and plant infection in Nostoc punctiforme. J Bacteriol 197(15):4547–4551

    Article  CAS  Google Scholar 

  • Duggan PS, Thiel T, Adams DG (2013) Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 59(2):111–120

    Article  CAS  Google Scholar 

  • Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, Adams D, Bergman B, Nierzwicki-Bauer SA, Rai AN, Schubler A (2006) Cyanobacterial-plant symbioses. In: Dworkin M, Falkow S, Rosenberg E, KH S, Stackebrandt E (eds) The prokaryotes, vol 1. Springer, New York, pp 331–363

    Google Scholar 

  • Ekman M, Picossi S, Campbell EL, Meeks JC, Flores E (2013) A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant Physiol 161(4):1984–1992

    Article  CAS  Google Scholar 

  • Enderlin C, Meeks J (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158(2):157–165

    Article  CAS  Google Scholar 

  • Fernandez-Valiente E, Ucha A, Quesada A, Leganes F, Carreres R (2000) Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant Soil 221(1):107–112

    Article  Google Scholar 

  • Fernandez-Valiente E, Quesada A (2004) A shallow water ecosystem: rice-fields. The relevance of cyanobacteria in the ecosystem. Limnetica 23(1–2):95–107

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic, London, p 459

    Google Scholar 

  • Fritsch FE (1907) The sub aerial and freshwater algal flora of the tropics. Ann Bot 30:235–275

    Article  Google Scholar 

  • Gantar M, Elhai J (1999) Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol 141(3):373–379

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z (1991a) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol 118(3):477–483

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1991b) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study. New Phytol 118(3):485–492

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1993) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: III. The role of a hormogonia-promoting factor. New Phytol 124(3):505–513

    Article  CAS  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour C (1995a) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance in the plants. New Phytol 129(2):337–343

    Article  CAS  Google Scholar 

  • Gantar M, Rowell P, Kerby N, Sutherland I (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol Fertil Soils 19(1):41–48

    Article  CAS  Google Scholar 

  • Gebhardt JS, Nierzwicki-Bauer SA (1991) Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria. Appl Environ Microbiol 57(8):2141–2146

    CAS  Google Scholar 

  • Grant IF, Roger PA, Watanabe I (1986) Ecosystem manipulation for increasing biological N2 fixation by blue-green algae (cyanobacteria) in lowland rice fields. Biol Agric Hortic 3(2–3):299–315

    Article  CAS  Google Scholar 

  • Grilli Caiola M, Forni C, Castagnola M (1993) Anabaena-Azollae akinetes in the sporocarps of azolla-filiculoides Lam. Symbiosis 14(1–3):247–264

    Google Scholar 

  • Grieco E, Desrochers R (1978) Production de vitamine B12 par une algue bleue. Can J Microbiol 24(12):1562–1566

    Article  CAS  Google Scholar 

  • Gupta AB (1966) Algal flora and its importance in the economy of rice fields. Hydrobiologia 28(2):213–222

    Article  Google Scholar 

  • Gupta AB, Agrawal V, Kushwaha AS (1967) Effect of algal growth promoting substances on wheat. Proc Natl Acad Sci India Sect B Biol Sci 37:349–355

    Google Scholar 

  • Gusev MV, Korzhenevskaya TG (1990) Artificial associations. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, pp 173–230

    Google Scholar 

  • Gusev MV, Baulina OI, Gorelova OA, Lobakova ES, Korzhenevskaya TG (2002) Artificial cyanobacterium-plant symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Springer, Dordrecht, pp 253–312

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  Google Scholar 

  • Hegde DM, Dwivedi BS, Sudhakara Babu SN (1999) Biofertilizers for cereal production in India: a review. Indian J Agric Sci 69(2):73–83

    Google Scholar 

  • Henriksson E (1971) Algal nitrogen fixation in temperate regions. Plant Soil 35(1):415–419

    Article  Google Scholar 

  • Ito O, Watanabe I (1985) Availability to rice plants of nitrogen fixed by Azolla. Soil Sci Plant Nutr 31(1):91–104

    Article  CAS  Google Scholar 

  • Jha KK, Ali MA, Singh R, Bhattacharya P (1965) Increasing rice production through the inoculation of Tolypothrix tenuis, a nitrogen fixing blue green alga. J Indian Soc Soil Sci 13:161

    Google Scholar 

  • Johansson C, Bergman B (1994) Reconstitution of the Gunneramanicata Linde symbiosis: cyanobacterial specificity. New Phytol 127(4):643–652

    Article  Google Scholar 

  • Kannaiyan S (1993) Nitrogen contribution by Azolla to rice crop. Energy 400(5.87):1–67

    Google Scholar 

  • Kannaiyan S (1994) Sporulation and spore germination in symbiotic nitrogen fixing water fern Azolla. In: AB P, Vaishampayan A (eds) Biology and application of nitrogen-fixing organisms: problems and prospects. Scientific Publishers, Jodhpur, pp 71–94

    Google Scholar 

  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proc Ind Natl Sci Acad 80(2):379–388

    Article  Google Scholar 

  • Kaushik BD, Venkataraman GS (1979) Effect of algal inoculation on the yield and vitamin C content of two varieties of tomato. Plant Soil 52(1):135–137

    Article  CAS  Google Scholar 

  • Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, Elhai J, Chiu WL (2010) Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. Plant Physiol 154(3):1381–1389

    Article  CAS  Google Scholar 

  • Kim JJH, Krawczyk K, Lorentz WP, Zimmerman WJ (1997) Fingerprinting cyanobionts and hosts of the Azolla symbiosis by DNA amplification. World J Microbiol Biotechnol 13(1):97–101

    Article  CAS  Google Scholar 

  • Knight CD, Adams DG (1996) A method for studying chemotaxis in nitrogen fixing cyanobacterium-plant symbioses. Physiol Mol Plant Pathol 49(2):73–77

    Article  Google Scholar 

  • Ladha JK, Watanabe I (1982) Antigenic similarity among Anabaena azollae separated from different species of Azolla. Biochem Biophys Res Commun 109(3):675–682

    Article  CAS  Google Scholar 

  • Lakshmanan A, Anthoniraj S, Abdul Kareem A (1997) Ammonia excretion by Azolla in dual cropping. Madras Agric J 84:552–553

    Google Scholar 

  • Lange W (1976) Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol 22(8):1181–1185

    Article  CAS  Google Scholar 

  • Liu CC (1979) Use of Azolla in rice production in China. In: Nitrogen and rice. Int. Rice Res. Inst, Los Baflos, pp 375–394

    Google Scholar 

  • Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34(2):111–153

    Article  CAS  Google Scholar 

  • Macrae IC, Castro TF (1967) Nitrogen fixation in some tropical soils. Soil Sci 103(4):277–280

    Article  CAS  Google Scholar 

  • Malliga P, Subramanian G (1995) Bacteria associated with leaf cavities of Azolla pinnata R. Br. Indian J Microbiol 35:21–21

    Google Scholar 

  • Manna AB, Singh PK (1991) Effects of nitrogen fertilizer application methods on growth and acetylene reduction activity of Azolla pinnata and yield of rice. Fertil Res 28(1):25–30

    Article  CAS  Google Scholar 

  • Marsalek B, Jahradnickova H, Hronkova M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139(4):506–508

    Article  CAS  Google Scholar 

  • Matsuguchi T (1978) Factors affecting heterotrophic nitrogen fixation in submerged rice soils [studies conducted in Japan]. In: Nitrogen and rice symposium, College, Laguna, pp 18–21

    Google Scholar 

  • Meeks JC (2006) Molecular mechanisms in the nitrogen-fixing Nostoc-Bryophyte symbiosis. In: Molecular basis of symbiosis, Progress in molecular and subcellular biology, vol 41. Springer, Berlin, pp 165–196

    Chapter  Google Scholar 

  • Meeks JC, Joseph CM, Haselkorn R (1988) Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros. Arch Microbiol 150(1):61–71

    Article  CAS  Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47(2):195–312

    Article  CAS  Google Scholar 

  • Misra S, Kaushik BD (1989) Growth promoting substances of cyanobacteria: Detection of amino acids, sugars and auxins. Proc Indian Natl Sci Acad B 55:499–504

    CAS  Google Scholar 

  • Nekrasova KA, Aleksandrova IV (1982) Participation of Collembolas and earthworms in the transformation of algal organic matter. Soviet Soil Sci 14(4):31–39

    Google Scholar 

  • Nierzwicki-Bauer SA (1990) Azolla-Anabaena symbiosis: use in agriculture. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, pp 119–136

    Google Scholar 

  • Nilsson M, Bhattacharya J, Rai AN, Bergman B (2002) Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strains. New Phytol 156(3):517–525

    Article  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2005) Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 245(1):139–144

    Article  CAS  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and non host plants. FEMS Microbiol Ecol 55(3):382–390

    Article  CAS  Google Scholar 

  • Okuda A, Yamaguchi M (1955) Nitrogen-fixing microorganisms in paddy soils (Part 1) characteristics of the nitrogen fixation in paddy soils. Soil Sci Plant Nutr 1(1):102–104

    Article  CAS  Google Scholar 

  • Pabby A, Dua S, Ahluwalia AS (2000) Changes in nitrogen metabolism of Azolla microphylla and Azolla pinnata on supplementation of nitrogen fertilizer. Phykos 39:51–59

    Google Scholar 

  • Pabby A, Prasanna R, Nayak S, Singh PK (2003) Physiological characterization of the cultured and freshly isolated endosymbionts from different species of Azolla. Plant Physiol Biochem 41(1):73–79

    Article  CAS  Google Scholar 

  • Pandey DC (1965) A study of the algae from paddy soils of Ballia and Ghazipur district of Uttar Pradesh, India: cultural and ecological considerations. Nova Hedw 9:299–334

    Google Scholar 

  • Pereira AL, Martins M, Oliveira MM, Carrapico F (2011) Morphological and genetic diversity of the family Azollaceae inferred from vegetative characters and RAPD markers. Plant Syst Evol 297(3–4):213–226

    Article  Google Scholar 

  • Peters GA (1975) The Azolla-Anabaena azollae relationship. III. Studies on metabolic capabilities and a further characterization of the symbiont. Arch Microbiol 103:113–122

    Article  CAS  Google Scholar 

  • Plazinski J, Gresshof PM (1990) The Azolla-Anabaena symbiosis. In: Gresshoff PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 51–75

    Google Scholar 

  • Plazinski J, Taylor R, Shaw W, Croft L, Rolfe BG, Gunning BES (1990) Isolation of Agrobacterium sp., strain from the Azolla leaf cavity. FEMS Microbiol Lett 70(1):55–59

    Article  CAS  Google Scholar 

  • Rai AN, Soderback E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Springer, Dordrecht, p 355

    Google Scholar 

  • Rains DW, Talley SN (1979) Use of azolla in North America. In: Nitrogen and rice symposium proceedings. International Rice Research Institute, pp 419–431

    Google Scholar 

  • Rao DLN, Burns RG (1990) The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9(3):239–244

    Article  CAS  Google Scholar 

  • Rasmussen U, Johansson C, Bergman B (1994) Early communication in the Gunnera-Nostoc symbiosis: plant-induced cell differentiation and protein synthesis in the cyanobacterium. Mol Plant Microbe Interact 7(6):696–702

    Article  CAS  Google Scholar 

  • Reynaud PA (1982) The use of azolla in West Africa. In: PH G, Harris SC (eds) Biological nitrogen fixation technology for tropical agriculture. Centro Internacional de Agricultura Tropical, Cali, pp 565–566

    Google Scholar 

  • Reynaud PA, Roger PA (1978) N2-fixing algal biomass in Senegal rice fields. Ecol Bull 26:148–157

    Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue-green algae and rice. International Rice Research Institute, Los Baflos, pp 1–112

    Google Scholar 

  • Roger PA, Reynaud PA (1976) Dynamique de la population algale au cours d’un cycle de culture dansune riziere Sahélienne. Rev Ecol Biol Sol 13(4):545–560

    Google Scholar 

  • Roger PA, Reynaud PA (1979) Ecology of blue green algae in paddy fields. International Rice Research Institute, Los Bailos, pp 289–309

    Google Scholar 

  • Roger P-A, Santiago-Ardales S, Reddy PM, Watanabe I (1987) The abundance of heterocystous blue-green algae in rice soils and inocula used for application in rice fields. Biol Fertil Soils 5(2):98–105

    Article  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18(3):209–215

    Article  Google Scholar 

  • Rogers SL, Cook KA, Burns RG (1991) Microalgal and cyanobacterial soil inoculants and their effect on soil aggregate stability. In: Wilson W (ed) Advances in soil organic matter research: the impact on agriculture and the environment. Royal Society of Chemistry, Cambridge, pp 175–184

    Google Scholar 

  • Roychoudhury P, Kaushik BD, Krishnamurthy GSR, Venkataraman GS (1979) Effect of blue-green algae and azolla application on the aggregation status of the soil. Curr Sci 48:454–455

    Google Scholar 

  • Sah RN (1989) Phosphorus requirement of Azolla pinnata: effects of low concentrations on growth and nitrogen fixation. Crop Sci 29(4):1033–1037

    Article  Google Scholar 

  • Schopf JW (1970) Precambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol Rev 45(3):319–352

    Article  Google Scholar 

  • Selvi Thamizh K, Sivakumar K (2012) Distribution of heterocystous cyanobacteria in rice fields of Cuddalore district, Tamil Naidu. Int J Life Sci Pharm Res 2(4):30–39

    Google Scholar 

  • Shi DJ, Hall DO (1988) The Azolla-Anabaena association: historical perspective, symbiosis and energy metabolism. Bot Rev 54(4):353–386

    Article  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi, pp 61–82

    Google Scholar 

  • Singh PK (1977a) Azolla plants as fertilizer and feed. Indian Farming 27:19–22

    Google Scholar 

  • Singh PK (1977b) Multiplication and utilization of fern Azolla containing nitrogen-fixing algal symbiont as green manure in rice cultivation. Riso 26:125–136

    Google Scholar 

  • Singh PK (1978) Nitrogen economy of rice soils in relation to nitrogen fixation by blue-green algae and Azolla. In: Increasing rice yield in Kharif, Cuttack, India, 1978. Central Rice Research Institute, pp 221–239

    Google Scholar 

  • Singh PK (1979) Use of Azolla in rice production in India. In: Nitrogen and rice symposium proceedings, Los Baffos, 1979. IRRI, pp 407–418

    Google Scholar 

  • Singh PK (1980) Symbiotic algal N2-fixation and crop productivity. In: CP M (ed) Annual reviews of plant sciences, vol 1. Kalayani, New Delhi

    Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Chang Environ Sustain 2:133–137

    Article  Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7(923):1–5

    Google Scholar 

  • Singh JS, Singh DP (2013) Plant Growth Promoting Rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  Google Scholar 

  • Singh VP, Trehan K (1973) Effect of extracellular products of Aulosira fertilissima on the growth of rice seedlings. Plant Soil 38(2):457–464

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Abhilash PC, Gupta VK (2016a) Agriculturally important microbes in sustainable food production. Trend Biotechnol 34:773–775

    Article  CAS  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Sinha RP, Hader DP (1996) Photobiology and ecophysiology of rice field cyanobacteria. Photochem Photobiol 64(6):887–896

    Article  CAS  Google Scholar 

  • Sinha RP, Vaishampayan A, Hader DP (1999) Plant-cyanobacterial symbiotic somaclones as a potential bionitrogen-fertilizer for paddy agriculture: biotechnological approaches. Microbiol Res 153(4):297–307

    Article  Google Scholar 

  • Stewart WDP, Rowell P, Ladha JK, Sampaio M (1979) Blue-green algae (Cyanobacteria)-some aspects related to their role as sources of fixed nitrogen in paddy soils. In: Nitrogen and rice. International Rice Research Institute, Manila, pp 263–285

    Google Scholar 

  • Svircev Z, Tamas I, Nenin P, Drobac A (1997) Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol 6:301–308

    Article  Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26(1):37–57

    Article  CAS  Google Scholar 

  • Traore TM, Roger PA, Reynaud PA, Sasson A (1978) N2-fixation by blue green algae in a paddy field in Mali. Cah ORSTOM Ser Biol 13(2):181–185

    Google Scholar 

  • Tung HF, Shen TC (1985) Studies of the Azolla pinnata and Anabaena azollae symbiosis: concurrent growth of Azolla with rice. Aquat Bot 22(2):145–152

    Article  CAS  Google Scholar 

  • Vaishampayan A (1994) Recent advances in the molecular biology of Azolla-Anabaena symbiotic nitrogen-fixing complex and its use in agriculture. In: Prasad AB, Bilgrami RS (eds) Microbes and environment. New Delhi, Narendra, pp 121–143

    Google Scholar 

  • Vaishampayan A (1996) Mineral requirements of the free-living and symbiotic cyanobacteria. In: Hemantaranjan A (ed) Advancements in micronutrient research. Jodhpur, Scientific, pp 103–126

    Google Scholar 

  • Vaishampayan A, Awasthi AK (1997) Advances in molecular biology, agronomics and somaclonal mutagenesis of Azolla-Anabaena symbiotic nitrogen-fixing complex. In: Microbes: for health, wealth and environment. Malhotra Publishing House, New Dehli, pp 1–34

    Google Scholar 

  • Vaishampayan A, Dey T, Sinha RP, Hader DP (1998) Successful rice cultivation with genetically manipulated thermo-tolerant Azolla as a bio-N fertilizer. Acta Hydrobiol 3(40):207–213

    Google Scholar 

  • Vaishampayan A, Sinha RP, Gupta AK, Hader DP (2000) A cyanobacterial recombination study, involving an efficient N2-fixing non-heterocystous partner. Microbiol Res 155(3):137–141

    Article  CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516

    Article  Google Scholar 

  • Van Hove C (1989) Azolla and its multiple uses with emphasis on Africa. Food and Agriculture Organization, Rome, p 53

    Google Scholar 

  • Venkataraman GS (1979) Algal inoculation in rice fields. In: Nitrogen and rice symposium proceedings. International Rice Research Institute, Manilla, pp 311–321

    Google Scholar 

  • Venkataraman GS (1988) Vast scope of biofertilizers. Hindu Sur Ind Agric:161–163

    Google Scholar 

  • Venkataraman GS (1993) Blue-green algae (cyanobacteria). In: SN T, AM W, MS M (eds) Biological nitrogen-fixation. Indian Council of Agricultural Research, New Delhi, pp 45–76

    Google Scholar 

  • Venkataraman GS, Goyal SK (1969) Influence of blue-green algae on the high yielding paddy variety IR8. Sci Cult 35:58

    Google Scholar 

  • Vlek PLG, Diakite MY, Mueller H (1995) The role of Azolla in curbing ammonia volatilization from flooded rice systems. Fertil Res 42(1–3):165–174

    Article  CAS  Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63(1):1–26

    Article  Google Scholar 

  • Watanabe A (1951a) Effect of nitrogen-fixing blue-green algae on the growth of rice plants. Nature 168:748–749

    Article  CAS  Google Scholar 

  • Watanabe A (1951b) Production in cultural solution of some amino acids by the atmospheric nitrogen-fixing blue-green algae. Arch Biochem Biophys 34(1):50–55

    Article  CAS  Google Scholar 

  • Watanabe I (1982) Azolla-Anabaena symbiosis, its physiology and use in tropical agriculture. In: Dommergues Y, Dien HG (eds) Microbiology of tropical soils and plant productivity. M. Nijhoff, The Hague, pp 169–185

    Chapter  Google Scholar 

  • Watanabe I, Brotonegoro S (1981) Paddy fields. In: Broughton WJ (ed) Nitrogen fixation. Oxford University Press, New York, pp 241–263

    Google Scholar 

  • Watanabe I, Lee KK (1975) Non-symbiotic nitrogen fixation in rice paddies. In: International symposium on biological nitrogen fixation in farming systems of humid tropics, IITA, Ibadan, pp 243–244

    Google Scholar 

  • Watanabe I, De Datta SK, Roger PA (1987) Nitrogen cycling in wetland rice soils. Proc Symp Adv in Nitrogen Cycling in Agriculture Ecosystems, Brisbane Australia

    Google Scholar 

  • Watanabe I, Liu CC (1992) Improving nitrogen-fixing systems and integrating them into sustainable rice farming. In: Ladha JK, George T, Bohlool BB (eds) Biological nitrogen fixation for sustainable agriculture, vol 49. Springer, Kyoto, pp 57–67

    Chapter  Google Scholar 

  • Watts SD, Knight CD, Adams DG (1999) Characterisation of plant exudates inducing chemotaxis in nitrogen-fixing cyanobacteria. In: Peschek G, Löffenhardt W, Schmetter G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum, New York, pp 679–684

    Chapter  Google Scholar 

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic, Netherlands, pp 233–255

    Google Scholar 

  • Whitton BA (2002a) Phylum cyanophyta (cyanobacteria). In: The freshwater algal flora of the British Isles, vol 702. Cambridge University Press, Cambridge, pp 25–122

    Google Scholar 

  • Whitton BA (2002b) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht, pp 233–255

    Chapter  Google Scholar 

  • Whitton BA, Aziz A, Kawecka B, Rother JA (1988) Ecology of deepwater rice fields in Bangladesh 3. Associated algae and macrophytes. Hydrobiologia 169:31–42

    Article  Google Scholar 

  • Wilson JT, Eskew DL, Habte M (1980) Recovery of nitrogen by rice from blue-green algae added in a flooded soil. Soil Sci Soc Am J 44:1330–1331

    Article  CAS  Google Scholar 

  • Yadav RK, Abraham G, Singh YV, Singh PK (2014) Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad 80:301–316

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial assistance received from University Grants Commission and Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Nath Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Syiem, M.B., Singh, A.K., Rai, A.N. (2017). N2-Fixing Cyanobacterial Systems as Biofertilizer. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_3

Download citation

Publish with us

Policies and ethics