Skip to main content

Priming Host Defense Against Biotic Stress by Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Mycorrhizal symbiosis has an important impact on plant interactions with pathogens and insects. Direct competition has been suggested as mechanism by which arbuscular mycorrhizae (AM) fungi can reduce the abundance of pathogenic fungi in roots. Priming set the plant to an “alert” state in which defenses are not actively expressed but in which the response to an attack occurs faster and/or stronger compared to plants not previously exposed to the priming stimulus, efficiently increasing plant resistance. Thus, priming confers important plant fitness benefit thereby defense priming by AM has a great ecological relevance. With regard to its bioprotective properties, the mycorrhizal symbiosis has become a focal point of research as an alternative to chemical fertilizers and pesticides in sustainable agriculture. In this chapter, we summarize the information available regarding mycorrhiza-induced resistance (MIR) with special emphasis in those involving plant defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture, horticulture and forestry. New India Publishing Agency, New Delhi

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1996) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford

    Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Bolwell GP (2004) Role of active oxygen species and NO in plant defense responses. Curr Opin Plant Biol 2:287–294

    Article  Google Scholar 

  • Campos-Soriano L, García-Martínez J, BS S (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  Google Scholar 

  • Chandanie W, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomusmosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. In: Loon LCV (ed) Advances in botanical research. Academic, Burlington, MA, pp 361–395

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianaevar. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    Article  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondian A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulates nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiol Biochem 40:605–610

    Article  CAS  Google Scholar 

  • Khallal SM (2007) Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (Jasmonic acid & Salicylic acid): 2-Changes in the antioxidant enzymes, phenolic compounds and pathogen related proteins. Aust J Basic Appl Sci 1:717–732

    Google Scholar 

  • Filion M, St Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using Real-Time Polymerase Chain Reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Lherminier J, Tisserant B, Franken P, Dumas-Gaudot E, Lemoine MC, Tuinen D, Gianinazzi S (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular mycorrhizal associations. Can J Bot 73:526–532

    Article  Google Scholar 

  • Hao Z, Fayolle L, Van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defense gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS, St Paul, pp 1–26

    Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR (2004) A Ca2+/calmodulindependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van-Wees SCM, Van-Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van-Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  Google Scholar 

  • Pineda A, Zheng SJ, Van Loon JJ, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  Google Scholar 

  • Pinochet J, Calvet C, Camprubi A, Fernandez C (1996) Interaction between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops. Plant Soil 185:183–190

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, JM B (1999) β-1, 3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    Article  CAS  Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defense mechanisms. In: Kapulnick Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 193–207

    Chapter  Google Scholar 

  • Pozo MJ, Van Der-Ent S, Van-Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal Phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance 18(3):275–281

    Article  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Clim Change Environ Sustain 2:133–137

    Google Scholar 

  • Singh JS (2015a) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS (2015b) Plant-microbe interactions: a viable tool for agricultural sustainability. Appl Soil Ecol 92:45–46

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Gupta VK (2016a) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34:773–775

    Article  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7(529):1–19

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Singh DP (2013) Plant growth promoting rhizobacteria (PGPR): microbes in sustainable agriculture. In: Malik A, Grohmann E, Alves M (eds) Management of microbial resources in the environment. Springer, Dordrecht, pp 307–319

    Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011c) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International, New Delhi, pp 223–243

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  Google Scholar 

  • Smith GS (1987) Interactions of nematodes with mycorrhizal fungi. In: Veech JA, Dickon DW (eds) Vistas on nematology. Society of Nematology, Hyattsville, MD, pp 292–300

    Google Scholar 

  • St-Arnaud M, Elsen A (2005) Interaction of arbuscular mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: Declerck S, Fortin A, Strullu DG (eds) In vitro culture of Mycorrhizas. Springer, Dordrecht, pp 217–231

    Chapter  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  Google Scholar 

  • Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373–378

    Article  CAS  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2011) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  Google Scholar 

  • Yao MK, Désilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, S., Rautela, P., Maharana, C., Singh, K.P. (2017). Priming Host Defense Against Biotic Stress by Arbuscular Mycorrhizal Fungi. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_12

Download citation

Publish with us

Policies and ethics