Advertisement

Material Modeling of Polymer Composites for Numerical Investigations of Continuous Mode Conversion

  • B. Hennings
  • R. LammeringEmail author
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Recent experimental investigations with a scanning laser vibrometer showed irregularities of the wave behavior in assumedly undamaged carbon fiber reinforced plastic (CFRP) plates with transiently excited symmetric (S0) and antisymmetric (A0) wave groups. This effect is not only visible in complex CFRP structures but also in single UD-layers. Therefore, this particular type of plate is focused. In this chapter at first, the wave propagation in simplified numerical 2D models with varying cross sections as well as with varying material properties is analyzed and therewith reasons for the observed wave propagation phenomenon named “quasi-continuous mode conversion” are discussed. On this basis, an approach for the generation of an enhanced material modeling using a sectored homogenization of the UD-layer is given. Finally, results of the simulation of wave propagation in a UD-layer by means of the introduced material modeling are presented.

References

  1. 1.
    Ahmad ZAB (2011) Numerical simulations of Lamb waves in plates using a semi-analytical finite element method. PhD thesis, Fakultät für Maschinenbau, MagdeburgGoogle Scholar
  2. 2.
    Altenbach H, Altenbach J, Rikards R (1996) Einführung in die Mechanik der Laminat- und Sandwichtragwerke: Modellierung und Berechnung von Balken und Platten aus Verbundwerkstoffen. Dt. Verl. für GrundstoffindustrieGoogle Scholar
  3. 3.
    Altenbach H, Altenbach J, Kissing W (2004) Mechanics of composite structural elements. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Becker W, Gross D (2013) Mechanik elastischer Körper und Strukturen. Springer, BerlinGoogle Scholar
  5. 5.
    Chawla KK (1987) Composite materials: science and engineering. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Gibson RF (1994) Principles of composite material mechanics. McGraw-Hill, SingaporeGoogle Scholar
  7. 7.
    Hennings B (2014) Elastische Wellen in faserverstärkten Kunststoffplatten – Modellierung und Berechnung mit spektralen finiten Elementen im Zeitbereich. PhD thesis, Helmut-Schmidt-Universität/ Universität der Bundeswehr HamburgGoogle Scholar
  8. 8.
    Hennings B, Lammering R (2016) Material modeling for the simulation of quasi-continuous mode conversion during Lamb wave propagation in CFRP-layers. Compos Struct 151:142–148CrossRefGoogle Scholar
  9. 9.
    Hennings B, Neuman MN, Lammering R (2013) Continuous mode conversion of Lamb waves in carbon fibre composite plastics – occurrence and modelling. In: Structural Health Monitoring – IWSHM 2013, pp 933–940Google Scholar
  10. 10.
    Jones RM (1975) Mechanics of composite materials. Taylor & Francis, PhiladelphiaGoogle Scholar
  11. 11.
    Matthews FL, Rawlings RD (1999) Composite materials: engineering and science. Woodhead, Cambridge and CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. Kluwer Academic, BostonCrossRefGoogle Scholar
  13. 13.
    Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley, New YorkCrossRefGoogle Scholar
  14. 14.
    Tsai SW, Hahn H (1980) Introduction to composite materials. Technomic, LancasterGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of MechanicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations