Advertisement

A Critical Evaluation of the Quality of Published 13C NMR Data in Natural Product Chemistry

Chapter
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 105)

Abstract

Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called “combinatorial explosion” in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.

This contribution presents a comprehensive analysis of frequently occurring errors with respect to 13C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

Keywords

Computer-assisted structure elucidation Structure revision Spectrum prediction Isomer generation Structure generation Nuclear Magnetic Resonance spectroscopy 13C-NMR/Carbon NMR Peer-reviewing Quality of spectroscopic data Signal assignment 

References

  1. 1.
    Nicolaou KC, Montagnon T (2008) Molecules that changed the world. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Nicolaou KC, Snyder SA (2005) Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44:1012CrossRefGoogle Scholar
  3. 3.
    Suyama TL, Gerwick WH, McPhail KL (2011) Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis. Bioorg Med Chem 19:6675CrossRefGoogle Scholar
  4. 4.
    Maier ME (2009) Structural revisions of natural products by total synthesis. Nat Prod Rep 26:1105CrossRefGoogle Scholar
  5. 5.
    Garcia-Rubino ME, Mahfoudh N, Campos JM (2014) Structural elucidation errors in organic chemistry. Curr Org Chem 18:1513CrossRefGoogle Scholar
  6. 6.
    Yoo H-D, Nam S-J, Chin Y-W, Kim M-S (2016) Misassigned natural products and their revised structures. Arch Pharm Res 39:143CrossRefGoogle Scholar
  7. 7.
    Elyashberg M, Williams AJ, Blinov K (2010) Structural revisions of natural products by Computer-Assisted Structure Elucidation (CASE) systems. Nat Prod Rep 27:1296CrossRefGoogle Scholar
  8. 8.
    Elyashberg M (2015) Identification and structure elucidation by NMR spectroscopy. Trends Anal Chem 69:88CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Reynolds WF, Mazzola EP (2015) Nuclear magnetic resonance in the structural elucidation of natural products. Prog Chem Org Nat Prod 100:223Google Scholar
  11. 11.
    Schütz V, Purtuc V, Felsinger S, Robien W (1997) CSEARCH-Stereo: a new generation of NMR database systems allowing three-dimensional spectrum prediction. Fresenius J Anal Chem 359:33CrossRefGoogle Scholar
  12. 12.
    Kalchhauser H, Robien W (1985) CSEARCH: a computer program for identification of organic compounds and fully automated assignment of carbon-13 nuclear magnetic resonance spectra. J Chem Inf Comput Sci 25:103CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Robien W (2009) Do high-quality 13C-NMR spectroscopic data really come from journals with high Impact Factors? Trends Anal Chem 28:914CrossRefGoogle Scholar
  16. 16.
    Li M-M, Wang K, He J, Peng L-Y, Chen X-Q, Cheng X, Zhao Q-S (2013) Four new labdane-type diterpenoid glycosides from Diplopterygium laevissimum. Nat Prod Bioprospect 3:38CrossRefGoogle Scholar
  17. 17.
    Hemalatha K, Hareeka N, Sunitha D (2012) Chemical constituents isolated from leaves of Barleria christata Linn. Int J Pharm Bio Sci 3:609Google Scholar
  18. 18.
    Hashimoto K, Katsuhara T, Niitsu K, Ikeya Y, Okada M, Mitsuhashi H (1992) Two glycosides from roots of Asiasarum sieboldi. Phytochemistry 31:2477CrossRefGoogle Scholar
  19. 19.
    Fan H, Yang G-Z, Zheng T, Mei Z-N, Liu X-M, Chen Y, Chen S (2010) Chemical constituents with free-radical-scavenging activities from the stem of Microcos paniculata. Molecules 15:5547CrossRefGoogle Scholar
  20. 20.
    Tsuge N, Mori T, Hamano T, Tanaka H, Shin-Ya K, Seto H (1999) Cinnatriacetins A and B, new antibacterial triacetylene derivatives from the fruiting bodies of Fistulina hepatica. J Antibiot 52:578CrossRefGoogle Scholar
  21. 21.
    Mariani C, Braca A, Vitalini S, De Tommasi N, Visioli F, Fico G (2008) Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry 69:1220CrossRefGoogle Scholar
  22. 22.
    Lu Y, Sun Y, Foo LY, McNabb WC, Molan AL (2000) Phenolic glycosides of forage legume Onobrychis viciifolia. Phytochemistry 55:67CrossRefGoogle Scholar
  23. 23.
    Demirkiran O, Mesaik MA, Beynek H, Abbaskhan A, Choudhary MI (2013) Immunosupressive phenolic constituents from Hypericum montbretii Spach. Rec Nat Prod 7:210Google Scholar
  24. 24.
    Panthama N, Kanokmedhakul S, Kanokmedhakul K (2009) Galloyl and hexahydroxydiphenoyl esters of phenylpropanoid glucosides, phenylpropanoids and phenylpropanoid glucosides from rhizome of Balanophora fungosa. Chem Pharm Bull 57:1352CrossRefGoogle Scholar
  25. 25.
    Sichaem J, Kaennakam S, Siripong P, Tip-pyang S (2012) Tabebuialdehydes A-C, cyclopentene dialdehyde derivatives from the roots of Tabebuia rosea. Fitoterapia 83:1456CrossRefGoogle Scholar
  26. 26.
    Es-Safi N-E, Khlifi S, Kerhoas L, Kollmann A, Abbouyi AE, Ducrot P-H (2005) Antioxidant constituents of the aerial parts of Globularia alypum Growing in Morocco. J Nat Prod 68:1293CrossRefGoogle Scholar
  27. 27.
    Kanokmedhakul S, Kanokmedhakul K, Kanarsa T, Buayairaksa M (2005) New bioactive clerodane diterpenoids from the bark of Casearia grewiifolia. J Nat Prod 68:183CrossRefGoogle Scholar
  28. 28.
    Jin D-Z, Min Z-D, Chiou GCY, Iinuma M, Tanaka T (1996) Two p-coumaroyl glycerides from Juncus effusus. Phytochemistry 41:545CrossRefGoogle Scholar
  29. 29.
    Cortez DAG, Young MCM, Marston A, Wolfender J-L, Hostettmann K (1998) Xanthones, triterpenes and a biphenyl from Kielmeyera coriacea. Phytochemistry 47:1367CrossRefGoogle Scholar
  30. 30.
    Goetz G, Fkyerat A, Métais N, Kunz M, Tabacchi R, Pezet R, Pont V (1999) Resistance factors to grey mould in grape berries: identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry 52:759CrossRefGoogle Scholar
  31. 31.
    Lee JP, Min BS, An RB, Na MK, Lee SM, Lee HK, Kim JG, Bae KH, Kang SS (2003) Stilbenes from the roots of Pleuropterus ciliinervis and their antioxidant activities. Phytochemistry 64:759CrossRefGoogle Scholar
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Bremser W (1978) HOSE—a novel substructure code. Anal Chim Acta 103:355CrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
  40. 40.
    Ross H (2015) EurJOC has come a long way. Eur J Org Chem 2015:4CrossRefGoogle Scholar
  41. 41.
    Fuwa H, Ebine M, Bourdelais AJ, Baden DG, Sasaki M (2006) Total synthesis, structure revision, and absolute configuration of (−)-brevenal. J Am Chem Soc 128:16989CrossRefGoogle Scholar
  42. 42.
    Pietruszka J, Rieche ACM (2008) Total synthesis of marine oxylipins solandelactones A–H. Adv Synthesis Catal 350:1407CrossRefGoogle Scholar
  43. 43.
    Bell RA, Dickson KC, Valliant JF (1999) The total synthesis of a technetium chelate—tamoxifen complex. Can J Chem 77:146CrossRefGoogle Scholar
  44. 44.
    Gustafsson T, Saxin M, Kihlberg J (2003) Synthesis of a C-glycoside analogue of β-d-galactosylthreonine. J Org Chem 68:2506CrossRefGoogle Scholar
  45. 45.
    Morales A, Ochoa E, Suárez M, Verdecia Y, González L, Martín N, Quinteiro M, Seoane C, Soto JL (1996) Novel hexahydrofuro[3,4-b]-2(1H)-pyridones from 4-aryl substituted 5-alkoxycarbonyl-6-methyl-3,4-dihydropyridones. J Heterocycl Chem 33:103CrossRefGoogle Scholar
  46. 46.
    Rodriguez H, Martin O, Suárez M, Martín N, Albericio F (2011) Eco-friendly methodology to prepare N-heterocycles related to dihydropyridines: microwave-assisted synthesis of alkyl 4-arylsubstituted-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate and 4-aryl substituted-4,7-dihydrofuro[3,4-b]pyridine-2,5(1H,3H)-dione. Molecules 16:9620CrossRefGoogle Scholar
  47. 47.
    https://scifinder.cas.org; Predicted NMR data calculated using Advanced Chemistry Development, Inc. (ACD/Labs) Software V11.01
  48. 48.
    Suárez M, Martín N, Martínez R, Verdecia Y, Molero D, Alba L, Seoane C, Ochoa E (2002) 1H and 13C spectral assignment of o-chloroformyl substituted 1,4-dihydropyridine derivatives. Magn Reson Chem 40:303CrossRefGoogle Scholar
  49. 49.
    Elnagdi NMH, Al-Hokbany NS (2012) Organocatalysis in synthesis: l-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 17:4300CrossRefGoogle Scholar
  50. 50.
    Suárez M, Molero D, Salfran E, Martín N, Verdecia Y, Martinez R, Ochoa E, Alba L, Quinteiro M, Seoane C (2001) 1H and 13C spectral assignment of 1,4,5,6,7,8-hexahydroquinolines and their oxo-analogues 5,6,7,8-tetrahydro-4H-chromenes. Magn Reson Chem 39:105CrossRefGoogle Scholar
  51. 51.
    Suárez M, Salfrán E, Verdecia Y, Ochoa E, Alba L, Martín N, Martínez R, Quinteiro M, Seoane C, Novoa H, Blaton N, Peeters OM, De Ranter C (2002) X-ray and theoretical structural study of novel 5,6,7,8-tetrahydrobenzo-4H-pyrans. Tetrahedron 58:953CrossRefGoogle Scholar
  52. 52.
    Salfrán E, Suárez M, Verdecia Y, Alvarez A, Ochoa E, Martínez-Alvarez R, Seoane C, Martín N (2004) One-step synthesis of aminopyrimidines from 5-oxo-4H-benzopyrans. J Heterocycl Chem 41:509CrossRefGoogle Scholar
  53. 53.
    Suárez M, Verdecia Y, Ochoa E, Martín N, Martínez R, Quinteiro M, Seoane C, Soto JL, Novoa H, Blaton N, Peeters OM, De Ranter C (2000) Synthesis and structural study of novel 1,4,5,6,7,8-hexahydroquinolines. J Heterocycl Chem 37:735CrossRefGoogle Scholar
  54. 54.
    Kaiser CR, Basso EA, Rittner R (2001) Substituent-induced 13C chemical shifts of 3-substituted camphors. Magn Reson Chem 39:643CrossRefGoogle Scholar
  55. 55.
    Sivakumar B, Murugan R, Baskaran A, Khadangale BP, Murugan S, Senthilkumar UP (2013) Identification and characterization of process-related impurities of trans-resveratrol. Sci Pharm 81:683CrossRefGoogle Scholar
  56. 56.
    Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds: tables of spectral data. Springer, Berlin HeidelbergGoogle Scholar
  57. 57.
    Ewing DF (1979) 13C substituent effects in monosubstituted benzenes. Org Magn Reson 12:499CrossRefGoogle Scholar
  58. 58.
    Liang S, Tian J-M, Feng Y, Liu X-H, Xiong Z, Zhang W-D (2011) Flavonoids from Daphne aurantiaca and their inhibitory activities against nitric oxide production. Chem Pharm Bull 59:653CrossRefGoogle Scholar
  59. 59.
    Dinda B, Debnath S, Banik R (2011) Naturally occurring iridoids and secoiridoids. An updated review, Part 4. Chem Pharm Bull 59:803CrossRefGoogle Scholar
  60. 60.
    Coy Barrera CA, Coy Barrera ED, Granados Falla DS, Delgado Murcia G, Cuca Suarez LE (2011) seco-Limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chem Pharm Bull 59:855Google Scholar
  61. 61.
    Silva CMBL, Garcia FP, Rodrigues JHDS, Nakamura CV, Ueda-Nakamura T, Meyer E, Ruiz ALTG, Foglio MA, Carvalho JED, Costa WFD, Sarragiotto MH (2012) Synthesis, antitumor, antitrypanosomal and antileishmanial activities of benzo[4,5]canthin-6-ones bearing the N′-(substituted benzylidene)-carbohydrazide and N-alkylcarboxamide groups at C-2. Chem Pharm Bull 60:1372CrossRefGoogle Scholar
  62. 62.
    Tsujimoto M, Lowtangkitcharoen W, Mori N, Pangkruang W, Putongking P, Suwanborirux K, Saito N (2013) Chemistry of ecteinascidins Part 4: preparation of 2′-N-acyl ecteinascidin 770 derivatives with improved cytotoxicity profiles. Chem Pharm Bull 61:1052CrossRefGoogle Scholar
  63. 63.
    Ukida K, Doi T, Sugimoto S, Matsunami K, Otsuka H, Takeda Y (2013) Schoepfiajasmins A-H: C-glycosyl dihydrochalcones, dihydrochalcone glycoside, C-glucosyl flavanones, flavanone glycoside and flavone glycoside from the branches of Schoepfia jasminodora. Chem Pharm Bull 61:1136CrossRefGoogle Scholar
  64. 64.
    Zhang B-B, Shi K, Liao Z-X, Dai Y, Zou Z-H (2011) Phenylpropanoid glycosides and triterpenoid of Pedicularis kansuensis Maxim. Fitoterapia 82:854CrossRefGoogle Scholar
  65. 65.
    Li C, Fu J, Yang J, Zhang D, Yuan Y, Chen N (2012) Three triterpenoid saponins from the roots of Polygala japonica Houtt. Fitoterapia 83:1184CrossRefGoogle Scholar
  66. 66.
    Ding L, Jiang Z, Liu Y, Chen L, Zhao Q, Yao X, Zhao F, Qiu F (2012) Monoterpenoid inhibitors of NO production from Paeonia suffruticosa. Fitoterapia 83:1598CrossRefGoogle Scholar
  67. 67.
    Ning J, Di Y-T, Fang X, He H-P, Wang Y-Y, Li Y, S-L LI, Hao X-J (2010) Limonoids from the leaves of Cipadessa baccifera. J Nat Prod 73:1327CrossRefGoogle Scholar
  68. 68.
    Fang L, Du D, Ding G-Z, Si Y-K, Yu S-S, Liu Y, Wang W-J, Ma S-G, Xu S, Qu J, Wang J-M, Liu Y-X (2010) Neolignans and glycosides from the stem bark of Illicium difengpi. J Nat Prod 73:818CrossRefGoogle Scholar
  69. 69.
    Cai S, Sun S, Zhou H, Kong X, Zhu T, Li D, Gu Q (2011) Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. J Nat Prod 74:1106CrossRefGoogle Scholar
  70. 70.
    Yang M-L, Kuo P-C, Hwang T-L, Wu T-S (2011) Anti-inflammatory principles from Cordyceps sinensis. J Nat Prod 74:1996CrossRefGoogle Scholar
  71. 71.
    Murillo E, McLean R, Britton G, Agócs A, Nagy V, Deli J (2011) Sapotexanthin, an A-provitamin carotenoid from red Mamey (Pouteria sapota). J Nat Prod 74:283CrossRefGoogle Scholar
  72. 72.
    Kavala M, Mathia F, Kozísek J, Szolcsányi P (2011) Efficient total synthesis of (+)-dihydropinidine, (−)-epidihydropinidine, and (−)-pinidinone. J Nat Prod 74:803CrossRefGoogle Scholar
  73. 73.
    Barber JM, Quek NCH, Leahy DC, Miller JH, Bellows DS, Northcote PT (2011) Lehualides E−K, cytotoxic metabolites from the Tongan marine sponge Plakortis sp. J Nat Prod 74:809CrossRefGoogle Scholar
  74. 74.
    Nelson KM, Salomon CE, Aldrich CC (2012) Total synthesis and biological evaluation of transvalencin Z. J Nat Prod 75:1037CrossRefGoogle Scholar
  75. 75.
    Xiong L, Zhu M, Zhu C, Lin S, Yang Y, Shi J (2012) Structure and bioassay of triterpenoids and steroids isolated from Sinocalamus affinis. J Nat Prod 75:1160CrossRefGoogle Scholar
  76. 76.
    Jain SK, Pathania AS, Meena S, Sharma R, Sharma A, Singh B, Gupta BD, Bhushan S, Bharate SB, Vishwakarma RA (2013) Semisynthesis of mallotus B from rottlerin: evaluation of cytotoxicity and apoptosis-inducing activity. J Nat Prod 76:1724CrossRefGoogle Scholar
  77. 77.
    Chen D, Chen W, Liu D, van Ofwegen L, Proksch P, Lin W (2013) Asteriscane-type sesquiterpenoids from the soft coral Sinularia capillosa. J Nat Prod 76:1753CrossRefGoogle Scholar
  78. 78.
    Hu Q-F, Zhou B, Ye Y-Q, Jiang Z-Y, Huang X-Z, Li Y-K, Du G, Yang G-Y, Gao X-M (2013) Cytotoxic deoxybenzoins and diphenylethylenes from Arundina graminifolia. J Nat Prod 76:1854CrossRefGoogle Scholar
  79. 79.
    Huang A-C, Wilde A, Ebmeyer J, Skouroumounis GK, Taylor DK (2013) Examination of the phenolic profile and antioxidant activity of the leaves of the Australian native plant Smilax glyciphylla. J Nat Prod 76:1930CrossRefGoogle Scholar
  80. 80.
    Liu X, Gan M, Dong B, Zhang T, Li Y, Zhang Y, Fan X, Wu Y, Bai S, Chen M, Yu L, Tao P, Jiang W, Si S (2013) 4862F, a new inhibitor of HIV-1 protease, from the culture of Streptomyces I03A-04862. Molecules 18:236CrossRefGoogle Scholar
  81. 81.
    Starha P, Popa I, Trávnícek Z, Vanco J (2013) N6-Benzyladenosine derivatives as novel N-donor ligands of platinum(II) dichlorido complexes. Molecules 18:6990CrossRefGoogle Scholar
  82. 82.
    Wang F, Han S, Hu S, Xue Y, Wang J, Xu H, Chen L, Zhang G, Zhang Y (2014) Two new secondary metabolites from Xylaria sp. cfcc 87468. Molecules 19:1250CrossRefGoogle Scholar
  83. 83.
    Rapado LN, Freitas GC, Polpo A, Rojas-Cardozo M, Rincón JV, Scotti MT, Kato MJ, Nakano E, Yamaguchi LF (2014) A benzoic acid derivative and flavokawains from Piper species as schistosomiasis vector controls. Molecules 19:5205CrossRefGoogle Scholar
  84. 84.
    Eerdunbayaer OMAA, Aoyama H, Kuroda T, Hatano T (2014) Structures of two new flavonoids and effects of licorice phenolics on vancomycin-resistant Enterococcus species. Molecules 19:3883CrossRefGoogle Scholar
  85. 85.
    Sun J, He X-M, Zhao M-M, Li L, Li C-B, Dong Y (2014) Antioxidant and nitrite-scavenging capacities of phenolic compounds from sugarcane (Saccharum officinarum L.) tops. Molecules 19:13147CrossRefGoogle Scholar
  86. 86.
    De Sousa Luis JA, Filho JMB, Lira BF, Medeiros IA, de Morais LCSL, dos Santos AF, de Oliveira CS, de Athayde-Filho PF (2010) Synthesis of new imidazolidin-2,4-dione and 2-thioxo-imidazolidin-4-ones via C-phenylglycine derivatives. Molecules 15:128CrossRefGoogle Scholar
  87. 87.
    Yasar S, Özcan EÖ, Gürbüz N, Cetinkaya B, Özdemir Í (2010) Palladium-catalyzed Heck coupling reaction of aryl bromides in aqueous media using tetrahydropyrimidinium salts as carbene ligands. Molecules 15:649CrossRefGoogle Scholar
  88. 88.
    Wang CF, Yang K, Zhang HM, Cao J, Fang R, Liu ZL, Du SS, Wang YY, Deng ZW, Zhou L (2011) Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 16:3077CrossRefGoogle Scholar
  89. 89.
    Jurcek O, Ikonen S, Buricová L, Wimmerová M, Wimmer Z, Drasar P, Hornícek J, Galandáková A, Ulrichová J, Kolehmainen ET (2011) Succinobucol’s new coat—conjugation with steroids to alter its drug effect and bioavailability. Molecules 16:9404CrossRefGoogle Scholar
  90. 90.
    Pokhrel M, Ma E (2011) Synthesis and screening of aromatase inhibitory activity of substituted C19 steroidal 17-oxime analogs. Molecules 16:9868CrossRefGoogle Scholar
  91. 91.
    Chaturvedula VSP, Upreti M, Prakash I (2011) Diterpene glycosides from Stevia rebaudiana. Molecules 16:3552CrossRefGoogle Scholar
  92. 92.
    Han L, Ji L, Boakye-Yiadom M, Li W, Song X, Gao X (2012) Preparative isolation and purification of four compounds from Cistanches deserticola Y.C. Ma by high-speed counter-current chromatography. Molecules 17:8276CrossRefGoogle Scholar
  93. 93.
    Wen Q, Lin X, Liu Y, Xu X, Liang T, Zheng N, Kintoko K, Huang R (2012) Phenolic and lignan glycosides from the butanol extract of Averrhoa carambola L. root. Molecules 17:12330CrossRefGoogle Scholar
  94. 94.
    Erenler R, Yilmaz S, Aksit H, Sen O, Genc N, Elmastas M, Demirtas I (2014) Antioxidant activities of chemical constituents isolated from Echinops orientalis Trauv. Rec Nat Prod 8:32Google Scholar
  95. 95.
    Sarikaya BB, Zencir S, Somer NU, Kaya GI, Onur MA, Bastida J, Berenyi A, Zupko I, Topcu Z (2012) The effects of arolycoricidine and narciprimine on tumor cell killing and topoisomerase activity. Rec Nat Prod 6:381Google Scholar
  96. 96.
    Huang X, Mu B, Lin W, Qiu Y (2012) Pterocarpin and isoflavan derivatives from Canavalia maritima (Aubl.) Thou. Rec Nat Prod 6:166Google Scholar
  97. 97.
    Hwang D, Hyun J, Jo G, Koh D, Lim Y (2011) Synthesis and complete assignment of NMR data of 20 chalcones. Magn Reson Chem 49:41CrossRefGoogle Scholar
  98. 98.
    Mattiza JT, Meyer VJ, Duddeck H (2010) Experimental verification of diverging mechanisms in the binding of ether, thioether, and sulfone ligands to a dirhodium tetracarboxylate. Magn Reson Chem 48:192Google Scholar
  99. 99.
    Devi P, Wahidullah S, Rodrigues C, Souza LD (2010) The sponge-associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds. Mar Drugs 8:1203CrossRefGoogle Scholar
  100. 100.
    Siless GE, Knott ME, Derita MG, Zacchino SA, Puricelli L, Palermo JA (2012) Synthesis of steroidal quinones and hydroquinones from bile acids by Barton radical decarboxylation and benzoquinone addition. Studies on their cytotoxic and antifungal activities. Steroids 77:45CrossRefGoogle Scholar
  101. 101.
    Krstic NM, Bjelakovic MS, Pavlovic VD, Robeyns K, Juranic ZD, Matic I, Novakovic I, Sladic DM (2012) New androst-4-en-17-spiro-1,3,2-oxathiaphospholanes. Synthesis, assignment of absolute configuration and in vitro cytotoxic and antimicrobial activities. Steroids 77:558CrossRefGoogle Scholar
  102. 102.
    Hsieh P-W, Chang F-R, Lee K-H, Hwang T-L, Chang S-M, Wu Y-C (2004) A new anti-HIV alkaloid, drymaritin, and a new C-glycoside flavonoid, diandraflavone, from Drymaria diandra. J Nat Prod 67:1175CrossRefGoogle Scholar
  103. 103.
    Bremser W, Wagner H, Franke B (1981) Fast searching for identical 13C NMR spectra via inverted files. Org Magn Reson 15:178CrossRefGoogle Scholar
  104. 104.
  105. 105.
    Wetzel I, Allmendinger L, Bracher F (2009) Revised structure of the alkaloid drymaritin. J Nat Prod 72:1908CrossRefGoogle Scholar
  106. 106.
    Li X, Wang N, Sau WM, Chen ASC, Yao X (2006) Four new isoflavonoids from the stem bark of Erythrina variegata. Chem Pharm Bull 54:570CrossRefGoogle Scholar
  107. 107.
    Liu Q, Chen C-J, Shi X, Zhang L, Chen H-J, Gao K (2010) Chemical constituents from Aphanamixis grandifolia. Chem Pharm Bull 58:1431CrossRefGoogle Scholar
  108. 108.
    Vo TN, Nguyen PL, Tuong LT, Pratt LM, Vo PN, Nguyen KPP, Nguyen NS (2012) Lignans and triterpenes from the root of Pseuderanthemum carruthersii var. atropurpureum. Chem Pharm Bull 60:1125CrossRefGoogle Scholar
  109. 109.
    Shimada M, Ozawa M, Iwamoto K, Fukuyama Y, Kishida A, Ohsaki A (2014) A lanostane triterpenoid and three cholestane sterols from Tilia kiusiana. Chem Pharm Bull 62:937CrossRefGoogle Scholar
  110. 110.
    Kim KS, Lee S, Shin JS, Shim SH, Kim B-K (2002) Arteminin, a new coumarin from Artemisia apiacea. Fitoterapia 73:266CrossRefGoogle Scholar
  111. 111.
    Hammoda HM, Aboul Ela MA, El-Lakany AM, El-Hanbali O, Zaki CS, Ghazy NM (2008) New constituents of Artemisia monosperma Del. Pharmazie 63:611Google Scholar
  112. 112.
  113. 113.
    Innok P, Rukachaisirikul T, Phongpaichit S, Suksamrarn A (2010) Fuscacarpans A−C, new pterocarpans from the stems of Erythrina fusca. Fitoterapia 81:518CrossRefGoogle Scholar
  114. 114.
    Zeng X, Qiu Q, Jiang C, Jing Y, Qiu G, He X (2011) Antioxidant flavanes from Livistona chinensis. Fitoterapia 82:609CrossRefGoogle Scholar
  115. 115.
    Shen C-C, Chang Y-S, Ho L-K (1993) Nuclear magnetic resonance studies of 5,7-dihydroxyflavonoids. Phytochemistry 34:843CrossRefGoogle Scholar
  116. 116.
    Osakabe N, Yamagishi M, Sanbongi C, Natsume M, Takizawa T, Osawa T (1998) The antioxidative substances in cacao liquor. J Nutr Sci Vitaminol 44:313CrossRefGoogle Scholar
  117. 117.
    Zhang M, Jagdmann GE Jr, Van Zandt M, Sheeler R, Beckett P, Schroeter H (2013) Chemical synthesis and characterization of epicatechin glucuronides and sulfates: bioanalytical standards for epicatechin metabolite identification. J Nat Prod 76:157CrossRefGoogle Scholar
  118. 118.
    Liu K-Q, Cheng X, Mi Z, Peng L, Li B-C (2014) Chemical constituents of the aerial parts of Cynanchum chinense R. Br. J Chem Pharm Res 6:990Google Scholar
  119. 119.
    Moyo F, Gashe BA, Majinda RRT (1999) A new flavan from Elephantorrhiza goetzei. Fitoterapia 70:412CrossRefGoogle Scholar
  120. 120.
    Venkataraman R, Gopalakrishnan S (2002) A lignan from the root of Ecbolium linneanum Kurz. Phytochemistry 61:963CrossRefGoogle Scholar
  121. 121.
    Deachathai S, Mahabusarakam W, Phongpaichit S, Taylor WC (2005) Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry 66:2368CrossRefGoogle Scholar
  122. 122.
    Wang Q-X, Bao L, Yang X-L, Guo H, Yang R-N, Ren B, Zhang L-X, Dai H-Q, Guo L-D, Liu H-W (2012) Polyketides with antimicrobial activity from the solid culture of an endolichenic Ulocladium sp. Fitoterapia 83:209CrossRefGoogle Scholar
  123. 123.
    Kashiwada Y, Nonaka G-I, Nishioka I (1990) Chromone glucosides from rhubarb. Phytochemistry 29:1007CrossRefGoogle Scholar
  124. 124.
    Ayer WA, Racok JS (1990) The metabolites of Talaromyces flavus: Part 1. Metabolites of the organic extracts. Can J Chem 68:2085CrossRefGoogle Scholar
  125. 125.
    Li X, Luo J-G, Wang X-B, Luo J, Wang J-S, Kong L-Y (2012) Phenolics from Leontopodium leontopodioides inhibiting nitric oxide production. Fitoterapia 83:883CrossRefGoogle Scholar
  126. 126.
    Fuller RW, Westergaard CK, Collins JW, Cardellina JH II, Boyd MR (1999) Vismiaphenones D−G, new prenylated benzophenones from Vismia cayennensis. J Nat Prod 62:67CrossRefGoogle Scholar
  127. 127.
    Monthakantirat O, De-Eknamkul W, Umehara K, Yoshinaga Y, Miyase T, Warashina T, Noguchi H (2005) Phenolic constituents of the rhizomes of the Thai medicinal plant Belamcanda chinensis with proliferative activity for two breast cancer cell lines. J Nat Prod 68:361CrossRefGoogle Scholar
  128. 128.
    Abou-Shoer MI, Shaala LA, Youssef DTA, Badr JM, Habib A-AM (2008) Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J Nat Prod 71:1464CrossRefGoogle Scholar
  129. 129.
    Shaker KH, Zinecker H, Ghani MA, Imhoff JF, Schneider B (2010) Bioactive metabolites from the sponge Suberea sp. Chem Biodivers 7:2880CrossRefGoogle Scholar
  130. 130.
    Liao Y, Shen C-N, Lin L-H, Yang Y-L, Han H-Y, Chen J-W, Kuo S-C, Wu S-H, Liaw C-C (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75:630CrossRefGoogle Scholar
  131. 131.
    Elyashberg M, Blinov K, Molodtsov S, Williams AJ (2013) Structure revision of asperjinone using computer-assisted structure elucidation methods. J Nat Prod 76:113CrossRefGoogle Scholar
  132. 132.
    Alam MS, Chopra N, Ali M, Niwa M (2000) Normethyl pentacyclic and lanostane-type triterpenes from Adiantum venustum. Phytochemistry 54:215CrossRefGoogle Scholar
  133. 133.
    Vystrcil A, Blecha Z (1973) Triterpenes. XXXI. Absolute configuration at C(20) in 30-nor-20ξ-lupanol derivatives. Collect Czech Chem Commun 38:3648CrossRefGoogle Scholar
  134. 134.
    Melos JLR, Silva LB, Peres MTLP, Mapeli AM, Faccenda O, Anjos HH, Torres TG, Tiviroli SC, Batista AL, Almeida FGN, Flauzino NS, Tibana LA, Hess SC, Honda NK (2007) Constituintes químicos e avaliacao do potencial alelopatico de Adiantum tetraphyllum Humb. & Bonpl. ex Willd. (Pteridaceae) Quim Nova 30:292Google Scholar
  135. 135.
    Grammes C, Burkhardt G, Becker H (1994) Triterpenes from Fossombronia liverworts. Phytochemistry 35:1293CrossRefGoogle Scholar
  136. 136.
    Shiojima K, Arai Y, Kasama T, Ageta H (1993) Fern constituents: triterpenoids isolated from the leaves of Adiantum monochlamys. Filicenol A, filicenol B, isoadiantol B, hakonanediol, and epihakonanediol. Chem Pharm Bull 41:262CrossRefGoogle Scholar
  137. 137.
    de Oliveira MDCF, Silveira ER (2000) Pentaoxygenated xanthones and fatty acids from Bredemeyera brevifolia. Phytochemistry 55:847CrossRefGoogle Scholar
  138. 138.
    Deachathai S, Mahabusarakam W, Phongpaichit S, Taylor WC, Zhang Y-J, Yang C-R (2006) Phenolic compounds from the flowers of Garcinia dulcis. Phytochemistry 67:464CrossRefGoogle Scholar
  139. 139.
    Kapche GDWF, Fozing CD, Donfack JH, Fotso GW, Amadou D, Tchana AN, Bezabih M, Moundipa PF, Ngadjui BT, Abegaz BM (2009) Prenylated arylbenzofuran derivatives from Morus mesozygia with antioxidant activity. Phytochemistry 70:216CrossRefGoogle Scholar
  140. 140.
    Fozing CDA, Ali Z, Ngadjui BT, Choudhary MI, Kapche GDWF, Abegaz BM, Khan IA (2012) Phosphodiesterase I-inhibiting Diels-Alder adducts from the leaves of Morus mesozygia. Planta Med 78:154CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Organic ChemistryUniversity of ViennaViennaAustria

Personalised recommendations