Skip to main content

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 105))

Abstract

Iboga alkaloids are a particular class of indolomonoterpenes most often characterized by an isoquinuclidine nucleus. Their first occurrence was detected in the roots of Tabernanthe iboga, a sacred plant to the people of Gabon, which made it cult object. Ibogaine is the main representative of this class of alkaloids and its psychoactive properties are well documented. It has been proposed as a drug cessation treatment and has a wide range of activities in targeting opioids, cocaine, and alcohol. The purpose of this chapter is to provide a background on this molecule and related compounds and to update knowledge on the most recent advances made. Difficulties linked to the status of ibogaine as a drug in several countries have hampered its development, but 18-methoxycoronaridine is currently under evaluation for the same purposes and for the treatment of leishmaniasis. The chapter is divided into six parts: an introduction aiming at defining what is called an iboga alkaloid, and this is followed by current knowledge on their biosynthesis, which unfortunately remains a “black box” as far as the key construction step is concerned. Many of these alkaloids are still being discovered and the third and fourth parts of the chapter discuss the analytical tools in use for this purpose and give lists of new monomeric and dimeric alkaloids belonging to this class. When necessary, the structures are discussed especially with regard to absolute configuration determinations, which remain a point of weakness in their assignments. Part V gives an account of progress made in the synthesis, partial and total, which the authors believe is key to providing solid solutions to the industrial development of the most promising molecules. The last part of the chapter is devoted to the biological properties of iboga alkaloids, with particular emphasis on ibogaine and 18-methoxycoronaridine.

Dedicated to the memory of Howard J Lotsof

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Men J, Taylor WI (1965) A uniform numbering system for indole alkaloids. Experientia 21:508

    Article  Google Scholar 

  2. Szabó LF (2008) Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine. Molecules 13:1875

    Article  Google Scholar 

  3. Alper KR, Glick SD (2001). In: Cordell GA (ed) The alkaloids, vol 56. Academic Press, San Diego‚ San Francisco‚ New York‚ Boston‚ London‚ Sydney‚ Tokyo, p 1

    Google Scholar 

  4. Sundberg RJ, Smith SQ (2002) In: Cordell GA (ed) The alkaloids, vol 59. Elsevier, Amsterdam, p 281

    Google Scholar 

  5. Saxton JE (1994) The ibogamine-catharanthine group. In: Saxton JE (ed) The monoterpenoid indole alkaloids, supplement to part 4. The chemistry of heterocyclic compounds, Taylor EC (ed) vol 25. Wiley, Chichester, New York, Brisbane, Toronto, Singapore, p 487

    Google Scholar 

  6. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloids biosynthesis. Nat Prod Rep 23:532

    Article  Google Scholar 

  7. Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Google Scholar 

  8. Kries H, O’Connor SE (2016) Biocatalysts from alkaloid producing plants. Curr Opin Chem Biol 31:22

    Article  CAS  Google Scholar 

  9. El-Sayed M, Choi YH, Frédérich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension culture fed with stemmadenine. Biotechnol Lett 26:79310

    Article  Google Scholar 

  10. Townsend CA (2011) A “Diels-Alderase” at last. ChemBioChem 12:2267

    Article  CAS  Google Scholar 

  11. Fage CD, Alsiorho E, Liu Y, Wagner DT, Liu HW, Keatinge-Clay AT (2011) The structure of SpnF, a standalone enzyme that catalyzes [4 + 2] cycloaddition. Nat Chem Biol 11:256

    Article  Google Scholar 

  12. Saxton JE (1994) The ibogamine-catharanthine group. In: Saxton JE (ed) The monoterpenoid indole alkaloids, supplement to part 4. The chemistry of heterocyclic compounds, Taylor EC (ed) vol 25. Wiley, Chichester, New York, Brisbane, Toronto, Singapore, p 495

    Google Scholar 

  13. Lim K-H, Raja VJ, Bradshaw TD, Lim SH, Low Y-Y, Kam T-S (2015) Ibogan, tacaman, and cytotoxic bisindole alkaloids from Tabernaemontana. Cononusine, an iboga alkaloid with unusual incorporation of a pyrrolidinone moiety. J Nat Prod 78:1129

    Article  CAS  Google Scholar 

  14. Moisan L, Doris E, Rousseau B, Thuéry P (2004) Catharanthinol and dihydrocatharanthinol: two iboga-class alkaloids. Acta Cryst C 60:792

    Article  Google Scholar 

  15. Jarraya RM, Bouaziz A, Hamdi B, Ben Salah A, Damak M (2008) N-(Hydroxymethyl)ibogaine. Acta Cryst E 64:1739

    Article  Google Scholar 

  16. Zhang D-B, Yu D-G, Sun M, Zhu X-X, Yao X-J, Zhou SY, Chen J-J, Gao K (2015) Ervatamines A–I, anti-inflammatory monoterpenoid indole alkaloids with diverse skeletons from Ervatamia hainanensis. J Nat Prod 78:1253

    Article  CAS  Google Scholar 

  17. Blaha K, Koblicova Z, Trojanek J (1974) Chiroptical investigations on the iboga and voacanga alkaloids. Collect Czech Chem Commun 39:2258

    Article  CAS  Google Scholar 

  18. Harada N, Nakanishi K (1983) Circular dichroism spectroscopy-exciton coupling in organic stereochemistry. University Sciences Books and Oxford University Press, Mill Valley‚ CA and Oxford, UK

    Google Scholar 

  19. Guo L-L, He H-P, Di Y-T, Li S-F, Cheng Y-Y, Yang W, Li Y, Yu J-P, Zhang Y, Hao J (2012) Indole alkaloids from Ervatamia chinensis. Phytochemistry 74:140

    Article  CAS  Google Scholar 

  20. Harada M, Asaba KN, Iwai M, Kogure N, Kitajima M, Takayama H (2012) Asymmetric total synthesis of an iboga-type indole alkaloid, voacangalactone, newly isolated from Voacanga africana. Org Lett 14:5800

    Article  CAS  Google Scholar 

  21. Bartlett MF, Dickel DF, Taylor WI (1958) The alkaloids of Tabernanthe iboga. Part IV.1 The structures of ibogamine, ibogaine, tabernanthine and voacangine. J Am Chem Soc 80:126

    Article  CAS  Google Scholar 

  22. Le Men J, Potier P, Le Men-Olivier L, Panas, JM, Richard B, Potron C (1974) Alkaloids of Gabonia eglandulosa–eglandine and eglandulosine. Bull Soc Chim Fr:1369

    Google Scholar 

  23. Le Men-Olivier L, Le Men J, Massiot G, Richard B, Mulamba T, Potier P, Husson HP, Van Beek T, Verpoorte R (1984) Révision des structures de l’églandine et de l’églandulosine. Bull Soc Chim Fr:94

    Google Scholar 

  24. Tang B-Q, Wang W-J, Huang X-J, Li G-Q, Wang L, Jiang R-W, Yang T-T, Shi L, Zhang X-Q, Ye W-C (2014) Iboga-type alkaloids from Ervatamia officinalis. J Nat Prod 77:1839

    Article  CAS  Google Scholar 

  25. Kitajima M, Iwai M, Kikura-Hanajiri R, Goda Y, Iida M, Yabushita H, Takayama H (2011) Discovery of indole alkaloids with cannabinoid CB1 receptor antagonistic activity. Bioorg Med Chem Lett 21:1962

    Article  CAS  Google Scholar 

  26. Jin YS, Du Jing-Ling JL, Chen HS, Jin L, Liang S (2010) A new indole alkaloid from Ervatamia yunnanensis. Fitoterapia 81:63

    Article  CAS  Google Scholar 

  27. Mak JYW, Pouwer RH, Williams CM (2014) Natural products with anti-Bredt and bridgehead double bonds. Angew Chem Int Ed 53:13664

    Article  CAS  Google Scholar 

  28. Langlois N, Langlois Y (2015) La découverte de la navelbine: histoire vécue. Imprimerie de Bretagne, Morlaix, France

    Google Scholar 

  29. Guéritte F, Le Roux M (2016) La Navelbine et le Taxotere: histoires de sciences. Iste Wiley Elsevier, London

    Google Scholar 

  30. Beatty JW, Stephenson CRJ (2014) Synthesis of (−)-pseudotabersonine, (−)-pseudovincadifformine, and (+)-coronaridine enabled by photoredox catalysis in flow. J Am Chem Soc 136:10270

    Article  CAS  Google Scholar 

  31. The Plant List (2015) A working list of all plant species. http://www.theplantlist.org/

  32. Kam T-S, Sim K-M (2002) Five new indole alkaloids from Tabernaemontana corymbosa. J Nat Prod 65:669

    Article  CAS  Google Scholar 

  33. Wenkert E, Cochran DW, Gottlieb HE, Hagaman EW, Braz Filho R, Matos FJA, Madruga MILM (1976) 13C NMR spectroscopy of naturally occurring substances. 45: Iboga alkaloids. Helv Chim Acta 59:2437

    Article  CAS  Google Scholar 

  34. Takayama H, Suda S, Chen IS, Kitajima M, Aimi N, Sakai S (1994) Two new dimeric indole alkaloids from Tabernaemontana subglogosa Merr. from Taiwan. Chem Pharm Bull 42:280

    Article  CAS  Google Scholar 

  35. Chen HS, Huang M, Liang S, Zhang XD, Jin L, Chen MY, Zheng JM, Liu JG (2008) Indole alkaloids from Ervatamia and their use as detoxifying agents. Chin Pat 200610031038.0

    Google Scholar 

  36. Nge CE, Kam WC, Thomas NF, Lim S-H, Low Y-Y, Kam T-S (2016) Ibogan, aspidosperman, vincamine, and bisindole alkaloids from a Malayan Tabernaemontana corymbosa: iboga alkaloids with C-20α substitution. J Nat Prod 79:1388

    Article  CAS  Google Scholar 

  37. Lim K-H, Goh T-S (2009) Conoliferine and isoconoliferine, structurally novel alkaloid-lignan conjugates from Tabernaemontana corymbosa. Tetrahedron Lett 50:3756

    Article  CAS  Google Scholar 

  38. Lim K-H, Goh T-S (2009) Conomicidines A and B, unusual alkaloid—hydroxycinnamyl alcohol conjugates from Tabernaemontana corymbosa. Helv Chim Acta 92:1895

    Article  CAS  Google Scholar 

  39. Liu Z-W, Huang X-J, Xiao H-L, Liu G, Zhang J, Shi L, Jiang R-W, Zhang X-Q, Ye W-C (2016) New iboga-type alkaloids from Ervatamia hainanensis. RSC Adv 6:30277

    Article  CAS  Google Scholar 

  40. Bao M-F, Yan J-M, Cheng G-G, Li X-Y, Liu Y-P, Li Y, Cai X-H, Luo X-D (2013) Cytotoxic indole alkaloids from Tabernaemontana divaricata. J Nat Prod 76:1406

    Article  CAS  Google Scholar 

  41. Feng XZ, Kan C, Potier P, Kan SK, Lounasmaa M (1982) Monomeric indole alkaloids from Ervatamia hainanensis. Planta Med 44:212

    Article  CAS  Google Scholar 

  42. de Souza JJ, Mathias L, Braz-Filho R, Carcino Vieira IJ (2010) Two new indole alkaloids from Tabernaemontana hustrix Steud. (Apocynaceae). Helv Chim Acta 93:422

    Article  Google Scholar 

  43. Rosenmund P, Haase WH, Bauer J, Frische R (1975) Contribution to chemistry of indole. 7. Syntheses in iboga series 3. Ibogamine, ibogaine and epiibogamine. Chem Ber 108:1871

    Google Scholar 

  44. Nge C-E, Gan C-Y, Low Y-Y, Thomas NF, Kam T-S (2013) Voatinggine and tabertinggine, pentacyclic indole alkaloids derived from an iboga precursor via a common cleavamine-type intermediate. Org Lett 15:4774

    Article  CAS  Google Scholar 

  45. Habib-ur-Rehman, Atta-ur-Rahman (2005) NMR studies on alioline—a novel vinca alkaloid. Z Naturforsch 60b:870

    Google Scholar 

  46. Ma K, Wang J-S, Luo J, Yang M-H, Kong L (2014) Tabercarpamines A–J, apoptosis-inducing indole alkaloids from the leaves of Tabernaemontana corymbosa. J Nat Prod 77:1156

    Article  CAS  Google Scholar 

  47. Sapi J, Massiot G (1994) Bisindole alkaloids. In: Saxton JE (ed) The monoterpenoid indole alkaloids, vol 4. Wiley, Chichester‚ New York‚ Brisbane‚ Toronto‚ Singapore, p 523

    Google Scholar 

  48. Zaima K, Hirata T, Hosoya T, Hirasawa Y, Koyama K, Rahman A, Kusumawati I, Zaini NC, Shiro M, Morita H (2009) Biscarpamontamines A and B, an aspidosperma-iboga bisindole alkaloid and an aspidosperma-aspidosperma bisindole alkaloid, from Tabernaemontana sphaerocarpa. J Nat Prod 72:1686

    Article  CAS  Google Scholar 

  49. Sim DS-Y, Teoh W-Y, Sim K-S, Lim S-H, Thomas NF, Low Y-Y, Kam T-S (2016) Vobatensines A − F, cytotoxic iboga-vobasine bisindoles from Tabernaemontana corymbosa. J Nat Prod 79:1048

    Article  CAS  Google Scholar 

  50. Kam T-S, Sim K-M (2002) New tabernamine derivatives from Tabernaemontana. Heterocycles 57:2137

    Article  CAS  Google Scholar 

  51. Kam T-S, Sim K-M, Pang H-S (2003) New bisindole alkaloids from Tabernaemontana corymbosa. J Nat Prod 66:11

    Article  CAS  Google Scholar 

  52. Kam T-S, Pang H-S (2004) Conodusarine, a new biologically active bisindole alkaloid from Tabernaemontana divaricata. Heterocycles 63:845

    Article  CAS  Google Scholar 

  53. Zhang Y, Guo L, Yang G, Guo F, Di Y, Li S, Chen D, Hao X (2015) New vobasinyl-ibogan type bisindole alkaloids from Tabernaemontana corymbosa. Fitoterapia 100:150

    Article  CAS  Google Scholar 

  54. Kam T-S, Sim K-M (2003) Conodirinines A and B, novel vobasine-iboga bisindoles incorporating an additional tetrahydro-1,3-oxazine unit on the vobasinyl moiety. Helv Chim Acta 86:122

    Article  CAS  Google Scholar 

  55. Girardot M, Deregnaucourt C, Deville A, Dubost L, Joyeau R, Allorge L, Rasoanaivo P, Mambu L (2012) Indole alkaloids from Muntafara sessilifolia with antiplasmodial and cytotoxic activities. Phytochemistry 73:65

    Article  CAS  Google Scholar 

  56. Girardot M, Gadea A, Deregnaucourt C, Deville A, Dubost L, Nay B, Maciuk A, Rasoanaivo P, Mambu L (2012) Tabernaelegantinals: unprecedented cytotoxic bisindole alkaloids from Muntafara sessilifolia. Eur J Org Chem:2816

    Google Scholar 

  57. Danieli B, Palmisano G, Gabetta B, Martinelli EM (1980) Tabernaelegantinines C and D, two new bisindole alkaloids containing a cyano group from Tabernaemontana elegans Stapf. J Chem Soc Perkin Trans 1:601

    Article  Google Scholar 

  58. Madinaveitia A, de la Fuente G, González A (1998) The absolute configuration at C(7) of voacangine hydroxyindolenine. Helv Chim Acta 81:1645

    Article  CAS  Google Scholar 

  59. Mizoguchi H, Oikawa H, Oguri H (2014) Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nat Chem 6:57

    Article  CAS  Google Scholar 

  60. Trost BM, Godleski SA, Genet JP (1978) Total synthesis of racemic and optically active ibogamine: utilization and mechanism of a new silver ion assisted palladium cyclization. J Am Chem Soc 100:3930

    Article  CAS  Google Scholar 

  61. Jana GK, Sinha S (2010) Synthesis of iboga alkaloids by Pd-catalyzed heteroannulation of 2-iodoaniline with an internal alkyne as the key step. Tetrahedron Lett 51:1441

    Article  CAS  Google Scholar 

  62. Jana GK, Sinha S (2010) A concise route to iboga-analogues via the formation of suitably substituted-2-indoles. Tetrahedron Lett 51:1994

    Article  CAS  Google Scholar 

  63. Paul S, Pattanayak S, Sinha S (2011) Synthesis of a new series of iboga-analogues. Tetrahedron Lett 52:6166

    Article  CAS  Google Scholar 

  64. Jana GK, Sinha S (2012) Reductive Heck coupling: an efficient approach toward the iboga alkaloids. Synthesis of ibogamine, epiibogamine and iboga analogs. Tetrahedron Lett 53:1671

    Article  CAS  Google Scholar 

  65. Jana GK, Sinha S (2012) Total synthesis of ibogaine, epiibogaine and their analogues. Tetrahedron 68:7155

    Article  CAS  Google Scholar 

  66. Kruegel AC, Rakshit S, Li X, Sames D (2015) Constructing iboga alkaloids via C–H bond functionalization: examination of the direct and catalytic union of heteroarenes and isoquinuclidine alkenes. J Org Chem 80:2062

    Article  CAS  Google Scholar 

  67. Höck S, Borschberg H-J (2006) Enantioselective synthesis of (−)-(19R)-ibogamin-19-ol. Helv Chim Acta 89:542

    Article  Google Scholar 

  68. Yang H, Carter RG (2009) Asymmetric construction of nitrogen-containing [2.2.2] bicyclic scaffolds using N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide. J Org Chem 75:5151

    Article  Google Scholar 

  69. Barve IJ, Dalvi PB, Thikekar TU, Chanda K, Liu Y-L, Fang C-P, Liu C-C, Sun C-M (2015) Design, synthesis and diversification of natural product-inspired hydantoin-fused tetrahydroazepino indoles. RSC Adv 5:73169

    Article  CAS  Google Scholar 

  70. Kuehne ME, Wilson TE, Bandarage UK, Dai W, Yu Q (2001) Enantioselective synthesis of coronaridine and 18-methoxycoronaridine. Tetrahedron 57:2085

    Article  CAS  Google Scholar 

  71. Alper KR, Lotsof HS, Frenken GMN, Luciano DJ, Bastiaans J (1999) Treatment of acute opioid withdrawal with ibogaine. Am J Addict 8:234

    Article  CAS  Google Scholar 

  72. Alper KR, Lotsof HS, Kaplan CD (2008) The ibogaine medical subculture. J Ethnopharmacol 115:9

    Article  CAS  Google Scholar 

  73. Mačiulaitis R, Kontrimavičiūtė V, Bressolle FMM, Briedis V (2008) Ibogaine, an anti-addictive drug: pharmacology and time to go further in development. A narrative review. Hum Exp Toxicol 27:181

    Article  Google Scholar 

  74. Brown TK (2013) Ibogaine in the treatment of substance dependence. Curr Drug Abuse Rev 6:3

    Article  CAS  Google Scholar 

  75. For a historical timeline see Alper KR, Glick SD (2001) In: Cordell GA (ed) The Alkaloids, vol 56. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, p 4

    Google Scholar 

  76. http://www.ibogaineconference.org/

  77. Alper KR, Stajić M, Gill JR (2012) Fatalities temporally associated with the ingestion of ibogaine. J Forensic Sci 57:398

    Article  CAS  Google Scholar 

  78. Maas U, Strubelt S (2006) Fatalities after taking ibogaine in addiction treatment could be related to sudden cardiac death caused by autonomic dysfunction. Med Hypotheses 67:960

    Article  CAS  Google Scholar 

  79. Chèze M, Lenoan A, Deveaux M, Pépin G (2008) Determination of ibogaine and noribogaine in biological fluids and hair by LC–MS/MS after Tabernanthe iboga abuse. Iboga alkaloids distribution in a drowning death case. Forensic Sci Int 176:58

    Article  Google Scholar 

  80. Papadodima SA, Dona A, Evaggelakos CI, Goutas N, Athanaselis SA (2013) Ibogaine related sudden death: a case report. J Forensic Leg Med 20:809

    Article  Google Scholar 

  81. Mazoyer C, Carlier J, Boucher A, Peoc’h M, Lemeur C, Gaillard Y (2013) Fatal case of a 27-year-old male after taking iboga in withdrawal treatment: GC-MS/MS determination of ibogaine and ibogamine in iboga roots and postmortem biological material. J Forensic Sci 58:1666

    Article  CAS  Google Scholar 

  82. Kontrimavičiūtė V, Mathieu O, Balas L, Escale R, Blayac JP, Bressolle FMM (2007) Ibogaine and noribogaine: structural analysis and stability studies. Use of LC-MS to determine alkaloid contents of the root bark of Tabernanthe iboga. J Liq Chromatogr Relat Technol 30:1077

    Article  Google Scholar 

  83. Kontrimavičiūtė V, Breton H, Mathieu O, Mathieu-Daudé J-C, Bressolle FMM (2006) Liquid chromatography–electrospray mass spectrometry determination of ibogaine and noribogaine in human plasma and whole blood. Application to a poisoning involving Tabernanthe iboga root. J Chromatogr B 843:131

    Google Scholar 

  84. Kontrimavičiūtė V, Breton H, Barnay F, Mathieu-Daudé J-C, Bressolle FMM (2006) Liquid chromatography-electrospray mass spectrometry determination of ibogaine and 12-hydroxy-ibogamine in human urine. Chromatographia 63:533

    Article  Google Scholar 

  85. Ray TS (2010) Psychedelics and the human receptorome. PLoS One 5, e9019

    Article  Google Scholar 

  86. Antonio T, Childers SR, Rothman RB, Dersch CM, King C, Kuehne M, Bornmann WG, Eshleman AJ, Janowsky A, Simon ER, Reith MAE, Alper K (2013) Effect of iboga alkaloids on μ-opioid receptor-coupled G protein activation. PLoS One 8, e77262

    Article  CAS  Google Scholar 

  87. Alper K, Reith MEA, Sershenc H (2012) Ibogaine and the inhibition of acetylcholinesterase. J Ethnopharmacol 139:879

    Article  CAS  Google Scholar 

  88. Paškulin R, Jamnik P, Živin M, Raspor P, Štrukelj B (2006) Ibogaine affects brain energy metabolism. Eur J Pharmacol 552:11

    Article  Google Scholar 

  89. Paškulin R, Jamnik P, Obermajer N, Slavić M, Štrukelj B (2010) Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool. Eur J Pharmacol 627:131

    Article  Google Scholar 

  90. Paškulin R, Jamnik P, Danevčič T, Koželj G, Krašovec R, Krstić-Milošević D, Blagojević D, Štrukelj B (2012) Metabolic plasticity and the energy economizing effect of ibogaine, the principal alkaloid of Tabernanthe iboga. J Ethnopharmacol 143:319

    Article  Google Scholar 

  91. Nikolić-Kokić A, Oreščanin-Dušić Z, Spasojević I, Slavić M, Mijušković A, Paškulin R, Miljević Č, Spasić MB, Blagojević DP (2015) Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes. J Ethnopharmacol 164:64

    Article  Google Scholar 

  92. Cachat J, Kyzara EJ, Collins C, Gaikwada S, Green J, Roth A, El-Ounsia M, Davis A, Pham M, Landsman S, Stewart AM, Kalueff AV (2013) Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav Brain Res 236:258

    Article  CAS  Google Scholar 

  93. Maisonneuve IM, Glick SD (2003) Anti-addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment. Pharmacol Biochem Behav 75:607

    Article  CAS  Google Scholar 

  94. Pace CJ, Glick SD, Maisonneuve IM, He L-W, Jokiel PA, Kuehne ME, Fleck MW (2004) Novel iboga alkaloid congeners block nicotinic receptors and reduce drug self-administration. Eur J Pharmacol 492:159

    Article  CAS  Google Scholar 

  95. Panchal V, Taraschenko OD, Maisonneuve IM, Glick SD (2005) Attenuation of morphine withdrawal signs by intracerebral administration of 18-methoxycoronaridine. Eur J Pharmacol 525:98

    Article  CAS  Google Scholar 

  96. Glick SD, Ramirez RL, Livi JM, Maisonneuve IM (2006) 18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats. Eur J Pharmacol 537:94

    Article  CAS  Google Scholar 

  97. Taraschenko OD, Maisonneuve IM, Glick SD (2010) 18-Methoxycoronaridine, a potential anti-obesity agent, does not produce a conditioned taste aversion in rats. Pharmacol Biochem Behav 96:247

    Article  CAS  Google Scholar 

  98. Delorenzi JC, Freire-de-Lima L, Gattass CR, de Andrade CD, He L, Kuehne ME, Saraiva EMB (2002) In vitro activities of iboga alkaloid congeners coronaridine and 18-methoxycoronaridine against Leishmania amazonensis. Antimicrob Agents Chemother 46:2011

    Article  Google Scholar 

  99. Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2015) Coronaridine, an iboga type alkaloid from Tabernaemontana divaricata, inhibits the Wnt signaling pathway by decreasing β-catenin mRNA expression. Bioorg Med Chem Lett 25:3937

    Article  CAS  Google Scholar 

  100. Gunasekera SP, Cordell GA, Farnsworth NR (1980) Anticancer indole alkaloids of Ervatamia heyneana. Phytochemistry 19:1213

    Article  CAS  Google Scholar 

  101. Banerjee TS, Paul S, Sinha S, Das S (2014) Synthesis of iboga-like isoquinuclidines: dual opioid receptors agonists having antinociceptive properties. Bioorg Med Chem 22:6062

    Article  CAS  Google Scholar 

  102. Ingkaninan K, Changwijit K, Suwanborirux K (2006) Vobasinyl-iboga bisindole alkaloids, potent acetylcholinesterase inhibitors from Tabernaemontana divaricata root. J Pharm Pharmacol 58:847

    Article  CAS  Google Scholar 

  103. Henriques AT, Melo AA, Moreno PR, Ene LL, Henriques JA, Schapoval EE (1996) Ervatamia coronaria: chemical constituents and some pharmacological activities. J Ethnopharmacol 50:19

    Article  CAS  Google Scholar 

  104. van Beek TA, Verpoorte R, Baerheim Svendsen A, Leeuwenberg AJM, Bisset NG (1984) Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnophamacol 10:1

    Google Scholar 

  105. Bretteville-Jensen AL, Lillehagen M, Gjersing L, Burdzovic Andreas J (2015) Illicit use of opioid substitution drugs: prevalence, user characteristics, and the association with non-fatal overdoses. Drug Alcohol Depend 147:89

    Article  Google Scholar 

Download references

Acknowledgments

It is our pleasure to thank the many individuals with whom we were able to exchange correspondence during the writing of this review: Ken Alper, Laurence Balas, Françoise Bressolle, Geoffrey Cordell, Mohammed Damak, Françoise Guéritte, Toh Seok Kam, Muriel Le Roux, Dalibor Sames, Surajit Sinha, and Hiromitsu Takayama. For pictures of plants, we are indebted to Philomène Akoua Kouassi, University of Cocody (Ivory Coast) and Bruno David, Pierre Fabre Laboratories, Toulouse (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Lavaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lavaud, C., Massiot, G. (2017). The Iboga Alkaloids. In: Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 105. Progress in the Chemistry of Organic Natural Products, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-49712-9_2

Download citation

Publish with us

Policies and ethics