Skip to main content

Jatropha Metabolomics

  • Chapter
  • First Online:
The Jatropha Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Jatropha, Jatropha curcas L., has been used for materials in traditional medicine, and recently its oil in the seed kernel has received much attention as a renewable energy source, biodiesel. Various biological activities such as antimicrobial, insecticidal, and anti-inflammatory have been found in all parts of the plant. Therefore, search for compounds with bioactivities in this plant and also its related species has been conducted for pharmaceutical and agricultural applications. The property of the seed oil has been well characterized. The oil quality meets the standards of the USA and European Union as diesel fuel. A major advantage of the oil production over other oil crops is that the jatropha plant cultivation does not compete with food production as the plant grows well in wastelands. Given the jatropha genome sequences have been determined, a systematic research in conjunction with the analysis of the whole metabolites (metabolome) could be a key for pharmaceutical or agricultural application. This chapter summarizes metabolomics approaches for jatropha, including integration of information of transcriptome and metabolome on jatropha metabolic pathway maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achten WMJ, Mathijs E, Verchot L, Singh VP, Aerts R, Muys B (2007) Jatropha biodiesel fueling sustainability? Biofuels Bioprod Biorefin 1:283–291

    Article  CAS  Google Scholar 

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1

    Article  CAS  PubMed  Google Scholar 

  • Barroso-González J, El Jaber-Vazdekis N, García-Expósito L, Machado J-D, Zárate R, Ravelo ÁG, Estévez-Braun A, Valenzuela-Fernández A (2009) The lupane-type triterpene 30-oxo-calenduladiol is a CCR5 antagonist with anti-HIV-1 and anti-chemotactic activities. J Biol Chem 284:16609–16620

    Article  PubMed  PubMed Central  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58:6543–6555

    Article  CAS  PubMed  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2011) Jatropha diterpenes: a review. J Am Oil Chem Soc 88:301–322

    Article  CAS  Google Scholar 

  • García A, Delgado G (2006a) Uncommon sesquiterpenoids and new triterpenoids from Jatropha neopauciflora (Euphorbiaceae). Helv Chim Acta 89:16–29

    Article  Google Scholar 

  • García A, Delgado G (2006b) Cytotoxic cis-fused bicyclic sesquiterpenoids from Jatropha neopauciflora. J Nat Prod 69:1618–1621

    Article  PubMed  Google Scholar 

  • Gaudani H, Gupta M, Gupta N, Trivedi S, Patil P, Gupta G, Krishna KV, Reddy MP, Sethiya BD, Rathod MR (2009) Isolation and characterization of Phorbol esters (toxin) from the Jatropha curcas L. Int J Microbiol Res 1:1–7

    Article  Google Scholar 

  • Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26:279–288

    Article  CAS  PubMed  Google Scholar 

  • Harry-Asobara JL, Eno-Obong SO (2014) Comparative study of the phytochemical properties of Jatropha curcas and Azadirachta indica plant extracts. J Poison Med Plants Res 2:020–024

    Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, Toyoda A, Fujiyama A, Tabata S, Fukui K, Sato S (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130

    Article  CAS  Google Scholar 

  • Hirota M, Suttajit M, Suguri H, Endo Y, Shudo K, Wongchai V, Hecker E, Fujiki H (1988) A new tumor promoter from the seed oil of Jatropha curcas L., an intramolecular diester of 12-deoxy-16-hydroxyphorbol. Cancer Res 48:5800–5804

    CAS  PubMed  Google Scholar 

  • Horiuchi T, Fujiki H, Hirota M, Suttajit M, Suganuma M, Yoshioka A, Wongchai V, Hecker E, Sugimura T (1987) Presence of tumor promoters in the seed oil of Jatropha curcas L. from Thailand. Jpn J Cancer Res 78:223–226

    CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7:e36522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TS, Eswaran N, Sujatha M (2011) Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep 30:1573–1591

    Article  Google Scholar 

  • Kajikawa M, Morikawa K, Inoue M, Widyastuti U, Suharsono S, Yokota A, Akashi K (2012) Establishment of bispyribac selection protocols for Agrobacterium tumefaciens- and Agrobacterium rhizogenes-mediated transformation of the oil seed plant Jatropha curcas L. Plant Biotechnol 29:145–153

    Article  CAS  Google Scholar 

  • Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  • Kera K, Ogata Y, Ara T, Nagashima Y, Shimada N, Sakurai N, Shibata D, Suzuki H (2014) ShiftedIonsFinder: A standalone Java tool for finding peaks with specified mass differences by comparing mass spectra of isotope-labeled and unlabeled data sets. Plant Biotechnol 31:269–274

    Article  CAS  Google Scholar 

  • King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  CAS  PubMed  Google Scholar 

  • Komatsu T, Ohishi R, Shino A, Akashi K, Kikuchi J (2014) Multi-spectroscopic analysis of seed quality and 13C-stable-iotopologue monitoring in initial growth metabolism of Jatropha curcas L. Metabolites 4:1018–1033

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28:1–10

    Article  CAS  Google Scholar 

  • Liu H, Wang C, Komatsu S, He M, Liu G, Shen S (2013) Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. J Proteomics 91:23–40

    Article  CAS  PubMed  Google Scholar 

  • Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahalakshmi R, Eganathan P, Parida AK (2013) Salicylic acid elicitation on production of secondary metabolite by cell cultures of Jatropha curcas L. Int J Pharm Pharm Sci 5:655–659

    Google Scholar 

  • Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787

    Article  CAS  Google Scholar 

  • Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646

    Article  CAS  PubMed  Google Scholar 

  • Misra M, Misra AN (2010) Jatropha: the biodiesel plant biology, tissue culture and genetic transformation—a review. Int J Pure Appl Sci Technol 1:11–24

    Google Scholar 

  • Mujumdar AM, Misar AV (2004) Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J Ethnopharmacol 90:11–15

    Article  CAS  PubMed  Google Scholar 

  • Nayak BS, Patel KN (2010) Anti-inflammatory screening of Jatropha curcas root, stem and leaf in albino rats. Rom J Biol Plant Biol 55:9–13

    Google Scholar 

  • Nwokocha Blessing A, Agbagwa IO, Okoli BE (2011) Comparative phytochemical screening of Jatropha L. species in the Niger Delta. Res J Phytochem 5:107–114

    Article  CAS  Google Scholar 

  • Ogunnaike BF, Okutachi IR, Anucha ES, Gbodi OO, Shokunbi OS, Onajobi FD (2013) Comparative anti-inflammatory activities of Jatropha curcas, Ocimum gratissimum and Solanum scabrum leaves. J Nat Prod Plant Resour 3:59–66

    Google Scholar 

  • Ohtani M, Nakano Y, Usami T, Demura T (2012) Comparative metabolome analysis of seed kernels in phorbol ester-containing and phorbol ester-free accessions of Jatropha curcas L. Plant Biotechnol 29:171–174

    Article  CAS  Google Scholar 

  • Pan B-Z, Chen MS, Ni J, Xu Z-F (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genom 15:974

    Article  Google Scholar 

  • Pereira Filho AA, França CRC, Oliveira DDS, Mendes RJDA, Gonçalves JDRS, Rosa IG (2014) Evaluation of the molluscicidal potential of hydroalcoholic extracts of Jatropha gossypiifolia Linnaeus, 1753 ON Biomphalaria glabrata (Say, 1818). Rev Inst Med Trop Sao Paulo 56:505–510

    Article  PubMed  Google Scholar 

  • Rachana S, Tarun A, Rinki R, Neha A, Meghna R (2012) Comparative analysis of antibacterial activity of Jatropha curcas fruit parts. J Pharm Biomed Sci 15:1–4

    Google Scholar 

  • Rampadarath S, Puchooa D, Ranghoo-Sanmukhiya M (2014) Antimicrobial, phytochemical and insecticidal properties of Jatropha species and wild Ricinus communis L. found in Mauritius. Int J Pharm Phytochem Res 6:831–840

    Google Scholar 

  • Ravindranath N, Reddy MR, Mahender G, Ramu R, Kumar KR, Das B (2004) Deoxypreussomerins from Jatropha curcas: are they also plant metabolites? Phytochemistry 65:2387–2390

    Article  CAS  PubMed  Google Scholar 

  • Ritter A, Dittami S, Goulitquer S, Correa J, Boyen C, Potin P, Tonon T (2014) Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol 14:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Rumzhum NN, Sohrab MH, Al-Mansur MA, Rahman MS, Hasan CM, Rashid MA (2012) Secondary metabolites from Jatropha podagrica Hook. J Phys Sci 23:29–37

    CAS  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics—‘majority report by precogs’. Trends Plant Sci 13:36–43

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N, Ara T, Ogata Y, Sano R, Ohno T, Sugiyama K, Hiruta A, Yamazaki K, Yano K, Aoki K, Aharoni A, Hamada K, Yokoyama K, Kawamura S, Otsuka H, Tokimatsu T, Kanehisa M, Suzuki H, Saito K, Shibata D (2011) KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucleic Acids Res 39:D677–D684

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N, Ogata Y, Ara T, Sano R, Akimoto N, Hiruta A, Suzuki H, Kajikawa M, Widyastuti U, Suharsono S, Yokota A, Akashi K, Kikuchi J, Shibata D (2012) Development of KaPPA-View4 for omics studies on Jatropha and a database system KaPPA-Loader for construction of local omics databases. Plant Biotechnol 29:131–135

    Article  CAS  Google Scholar 

  • Sakurai N, Ara T, Kanaya S, Nakamura Y, Iijima Y, Enomoto M, Motegi T, Aoki K, Suzuki H, Shibata D (2013) An application of a relational database system for high-throughput prediction of elemental compositions from accurate mass values. Bioinformatics 29:290–291

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, Kurabayashi A, Iijima Y, Ogata Y, Nakajima D, Suzuki H, Shibata D (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. Biomed Res Int 2014:11

    Article  Google Scholar 

  • Sano R, Ara T, Akimoto N, Sakurai N, Suzuki H, Fukuzawa Y, Kawamitsu Y, Ueno M, Shibata D (2012) Dynamic metabolic changes during fruit maturation in Jatropha curcas L. Plant Biotechnol 29:175–178

    Article  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  Google Scholar 

  • Seth R, Sarin R (2010) Analysis of the phytochemical content and anti-microbial activity of Jatropha gossypifolia L. Arch Appl Sci Res 2:285–291

    CAS  Google Scholar 

  • Sidhu OP, Annarao S, Pathre U, Snehi SK, Raj SK, Roy R, Tuli R, Khetrapal CL (2010) Metabolic and histopathological alterations of Jatropha mosaic begomovirus-infected Jatropha curcas L. by HR-MAS NMR spectroscopy and magnetic resonance imaging. Planta 232:85–93

    Article  CAS  PubMed  Google Scholar 

  • Silva CR, Frohlich JK, Oliveira SM, Cabreira TN, Rossato MF, Trevisan G, Froeder AL, Bochi GV, Moresco RN, Athayde ML, Ferreira J (2013) The antinociceptive and anti-inflammatory effects of the crude extract of Jatropha isabellei in a rat gout model. J Ethnopharmacol 145:205–213

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  PubMed  Google Scholar 

  • Soga T (2007) Capillary electrophoresis–mass spectrometry for metabolomics. In: Weckwerth W (ed) Metabolomics: methods and protocols. Humana Press, New York, pp 129–137

    Chapter  Google Scholar 

  • Staubmann R, Manfred S-Z, Hiermann A, Kartnig T (1999) A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas. Phytochemistry 50:337–338

    Article  CAS  Google Scholar 

  • Sutthivaiyakit S, Mongkolvisut W, Prabpai S, Kongsaeree P (2009) Diterpenes, sesquiterpenes, and a sesquiterpene− coumarin conjugate from Jatropha integerrima. J Nat Prod 72:2024–2027

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmers M, Urban S (2011) On-line (HPLC–NMR) and off-line phytochemical profiling of the Australian plant, Lasiopetalum macrophyllum. Nat Prod Commun 6:1605–1616

    CAS  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  CAS  PubMed  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-View. A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201

    Article  CAS  PubMed  Google Scholar 

  • Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D, Fukui K (2012) Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnol 29:137–143

    Article  CAS  Google Scholar 

  • Uche FI, Aprioku JS (2008) The phytochemical constituents, analgesic and anti-inflammatory effects of methanol extract of Jatropha curcas leaves in mice and Wister albino rats. J Appl Sci Environ Manag 12:99–102

    Google Scholar 

  • Watanabe T, Shino A, Akashi K, Kikuchi J (2014) Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery. PLoS One 9:e106893

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto N, Suzuki T, Ara T, Sakurai N, Shinpo S, Morishita Y, Sasaki R, Tsugane T, Suzuki H, Shibata D (2012) MatchedIonsFinder: a software tool for revising alignment matrices of spectrograms from liquid chromatography-mass spectrometry. Plant Biotechnol 29:109–113

    Article  CAS  Google Scholar 

  • Yang YF, Liu JQ, Li XY, Liu EQ, Li ZR, Qiu MH (2013) New terpenoids from the roots of Jatropha curcas. Chin Sci Bull 58:1115–1119

    Article  CAS  Google Scholar 

  • Zhang L, Zhang C, Wu P, Chen Y, Li M, Jiang H, Wu G (2014) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 9:e97878

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shibata, D., Sano, R., Ara, T. (2017). Jatropha Metabolomics. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_5

Download citation

Publish with us

Policies and ethics