Skip to main content

Towards Varietal Improvement of Jatropha by Genetic Transformation

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Since the 2008 oil crisis, the need for alternative sources of biofuels is becoming more and more apparent. Jatropha is considered as one of the important candidate sources of renewable energy because it is a non-edible plant and it contains high amounts of oil that is of good quality. Furthermore, Jatropha is said to be drought tolerant and can be cultivated in marginal lands, thus avoiding competition with food crops for agricultural lands. However, disappointing result in Jatropha plantations caused a decline in the general interest toward this biofuel crop. Since Jatropha has not been domesticated, there will be more possibilities for varietal improvement either by conventional breeding or genetic modification. Several traits that need improvement in Jatropha include toxicity, low yield, and low tolerance to abiotic stress. The development of transgenic Jatropha will be a more practical way to address the growing need for a cheap and renewable source of energy. Moreover, Jatropha is a suitable model plant to study drought tolerance and its applicability for cultivation in arid land. This chapter presents the current progress in the development of transgenic Jatropha with special emphasis on gene discovery and transformation methods.

Keywords

  • Jatropha
  • Genetic transformation
  • Drought tolerance
  • Biofuel crop
  • Varietal improvement

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-49653-5_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-49653-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1

References

  • Achten WMJ, Maes WH, Reubens B, Mathijs E, Singh VP, Verchotd L, Muys B (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 34:667–676

    CrossRef  Google Scholar 

  • Adam SEI (1974) Toxic effects of Jatropha curcas in mice. Toxicology 2:67–76

    CAS  CrossRef  PubMed  Google Scholar 

  • Adarsh BV (2011) Synthetic Paraffinic Kerosene (SPK) from Jatropha curcas: overall impact on environment. Int J Res Chem Environ 1(2):123–126

    Google Scholar 

  • Agarwal P, Dabi M, Agarwal PK (2014) Molecular cloning and characterization of a group II WRKY transcription factor from Jatropha curcas, an important biofuel crop. DNA Cell Biol 33(8):503–513

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    CAS  CrossRef  Google Scholar 

  • Becker K, Makkar HP (1998) Effects of phorbol esters in carp (Cyprinus carpio L.). Vet Hum Toxicol 40(2):82–86

    CAS  PubMed  Google Scholar 

  • Cartagena JA, Seki M, Tanaka M, Yamauchi T, Sato S, Hirakawa H, Tsuge T (2014) Gene expression profiles in Jatropha under drought stress and during recovery. Plant Mol Biol Rep 33(4):1075–1087

    CrossRef  Google Scholar 

  • Chomchai C, Kriengsunthornkij W, Sirisamut T, Nimsomboon T, Rungrueng W, Silpasupagornwong U (2011) Toxicity from ingestion of Jatropha curcas (‘saboo dum’) seeds in Thai children. Southeast Asian J Trop Med Public Health 42(4):946–950

    PubMed  Google Scholar 

  • Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA, Da Silva MJ (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11:462. doi:10.1186/1471-2164-11-462

    CrossRef  Google Scholar 

  • Debnath M, Bisen PS (2008) Jatropha curcas L., a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol 9(4):288–306

    CAS  CrossRef  PubMed  Google Scholar 

  • Devappa RK, Roach JS, Makkar HP, Becker K (2013) Occular and dermal toxicity of Jatropha curcas phorbol esters. Ecotoxicol Environ Saf 94:172–178

    CAS  CrossRef  PubMed  Google Scholar 

  • Eckart K, Henshaw P (2012) Jatropha curcas L. and multifunctional platforms for the development of rural sub-Saharan Africa. Energy Sustain Dev 16(3):303–311

    CrossRef  Google Scholar 

  • Eswaran N, Parameswaran S, Anantharaman B, Kumar GRK, Sathram B, Johnson TS (2012) Generation of an expressed sequence tag (EST) library from salt-stressed roots of Jatropha curcas for identification of abiotic stress-responsive genes. Plant Biol 14:428–437

    CAS  CrossRef  PubMed  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    CAS  CrossRef  PubMed  Google Scholar 

  • Fujimaki H, Kikuchi N (2010) Drought and salinity tolerances of young Jatropha. Int Agrophys 24:121–127

    Google Scholar 

  • Gomes KA, Almeida TC, Gesteira AS, Lôbo IP, Guimarães ACR, de Miranda AB, Van Sluys MA, da Cruz RS, Cascardo JCM, Carels N (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genom Insights 3:29–56

    CAS  Google Scholar 

  • Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7:68. doi:10.1186/1754-6834-7-68

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hallare AV, Ruiz PLS, Cariño JCED (2014) Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test. Environ Sci Pollut Res 21:6044–6056

    CAS  CrossRef  Google Scholar 

  • Heller J (1996) Physic Nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, Toyoda A, Fujiyama A, Tabata S, Fukui K, Sato S (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130

    CAS  CrossRef  Google Scholar 

  • Igbinosa OO, Oviasogie EF, Igbinosa EO, Igene O, Igbinosa IH, Idemudia OG (2013) Effects of biochemical alteration in animal model after short-term exposure of Jatropha curcas (Linn) leaf extract. Sci World J. doi:10.1155/2013/798096

    Google Scholar 

  • Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A (2014) An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma 251(3):591–601

    CAS  CrossRef  PubMed  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8(8):e71136

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crop Prod 33:67–77

    CAS  CrossRef  Google Scholar 

  • Kheira AAA, Atta NMM (2009) Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oil seed characteristics. Biomass Bioenergy 33:1343–1350

    CrossRef  Google Scholar 

  • Khemkladngoen N, Cartagena J, Fukui K (2011a) Physical wounding-assisted Agrobacterium-mediated transformation for juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. Plant Biotechnol Rep 5:235–243

    CrossRef  Google Scholar 

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011b) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

    CAS  CrossRef  PubMed  Google Scholar 

  • Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7(1):36. doi:10.1186/1754-6834-7-36

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenerg Res 4:211–221

    CrossRef  Google Scholar 

  • Krishnamurthy L, Zaman-Allah M, Marimuthu S, Wani SP, Rao AVRK (2012) Root growth in Jatropha and its implications for drought adaptation. Biomass Bioenergy 39:247–252

    CrossRef  Google Scholar 

  • Kumar N, Anand KGV, Pamidimarri DVNS, Sarkar T, Reddy MP, Radhakrishnan T, Kaul T, Reddy MK, Sopori SK (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32:41–47

    CAS  CrossRef  Google Scholar 

  • Li M, Li H, Jiang H, Pan X, Wu G (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Org Cult 92:173–181

    CAS  CrossRef  Google Scholar 

  • Li CY, Devappa RK, Liu JX, Lv JM, Makkar HP, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48(2):620–625

    CAS  CrossRef  PubMed  Google Scholar 

  • Li H-L, Guo D, Peng SQ (2014) Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor. Genet Mol Biol 37(3):549–555

    Google Scholar 

  • Li C, Luo L, Fu Q, Niu L, Xu ZF (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol 14:125. doi:10.1186/1471-2229-14-125

  • Lin J, Li YX, Zhou XW, Tang KX, Chen F (2003) Cloning and characterization of a curcin gene encoding a ribosome inactivating protein from Jatropha curcas. DNA Seq 14(4):311–317

    CAS  CrossRef  PubMed  Google Scholar 

  • Lin J, Zhou X, Wang J, Jiang P, Tang K (2010) Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep Biochem Biotechnol 40(2):107–118

    CAS  CrossRef  PubMed  Google Scholar 

  • Liu Z, Bao H, Cai J, Han J, Zhou L (2014) A novel thylakoid ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic tobacco. Int J Mol Sci 15:171–185

    CrossRef  Google Scholar 

  • Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009) Plant–water relationships and growth strategies of Jatropha curcas L. saplings under different levels of drought stress. J Arid Environ 73:877–884

    CrossRef  Google Scholar 

  • Moffatt BA, Weretilnyk EA (2001) Sustaining S-adenosyl-l-methionine-dependent methyltransferase activity in plant cells. Physiol Plant 113:435–442

    CAS  CrossRef  Google Scholar 

  • Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genom 11:606. doi:10.1186/1471-2164-11-606

    CrossRef  Google Scholar 

  • Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genom 12:191. doi:10.1186/1471-2164-12-191

    CAS  CrossRef  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Niu G, Rodriguez D, Mendoza M, Jifon J, Ganjegunte G (2012) Responses of Jatropha curcas to salt and drought stresses. Int J Agron. doi:10.1155/2012/632026

    Google Scholar 

  • Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum forbiodiesel: a review. Renew Sustain Energy Rei 15:3501–3515

    CAS  CrossRef  Google Scholar 

  • Pan BZ, Chen MS, Ni J, Xu ZF (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genom 15:974. doi:10.1186/1471-2164-15-974

    CrossRef  Google Scholar 

  • Pan BZ, Xu ZF (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174

    CAS  CrossRef  Google Scholar 

  • Patade VY, Khatri D, Kumar K, Grover A, Kumari M, Gupta SM, Kumar D, Nasim M (2014) RNAi mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Mol Biol Rep 41:4305–4312

    CAS  CrossRef  PubMed  Google Scholar 

  • Poon R, Valli VE, Ratnayake WM, Rigden M, Pelletier G (2013) Effects of Jatropha oil on rats following 28-day oral treatment. J Appl Toxicol 33(7):618–625

    CAS  CrossRef  PubMed  Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54(1):13–20

    CAS  CrossRef  Google Scholar 

  • Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5(1):10. doi:10.1186/1754-6834-5-10

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Raja SA, Smart DSR, Lee CLR (2011) Biodiesel production from Jatropha oil and its characterization. Res J Chem Sci 1:81–87

    Google Scholar 

  • Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398

    Google Scholar 

  • Renner A, Zelt T, Gerteiser S (2008) Global market study on Jatropha. GEXSI, London. http://www.jatropha-alliance.org/fileadmin/documents/GEXSI_Global-Jatropha-Study_FULL-REPORT.pdf Accessed 12 Apr 2015

  • Rubio S, Whitehead L, Larson TR, Graham IA, Rodriguez PL (2008) The coenzyme a biosynthetic enzyme phosphopantetheine adenylyltransferase plays a crucial role in plant growth, salt/osmotic stress resistance, and seed lipid storage. Plant Physiol 148:546–556

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sanderson K (2009) Wonder weed plans fail to flourish. Nature 461:328–329

    CAS  CrossRef  PubMed  Google Scholar 

  • Sapeta H, Costa JM, Lourenço T, Maroco J, van der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    CAS  CrossRef  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-I T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree Jatropha curcas L. DNA Res 18(1):65–76

    CAS  CrossRef  PubMed  Google Scholar 

  • Shah V, Sanmukhani J (2010) Five cases of Jatropha curcas poisoning. J Assoc Physicians India 58:245–246

    PubMed  Google Scholar 

  • Sinkala T, Johnson FX (2012) Small-scale production of Jatropha in Zambia and its implications for rural development and national biofuel policies. In: Janssen Rainer, Rutz Dominik (eds) Bioenergy for sustainable development in Africa, Part 1. Springer, Netherlands, pp 41–51

    CrossRef  Google Scholar 

  • Spielberg GT (2009) Alternative jet fuel: the Jatropha plant? http://www.businessweek.com/bwdaily/dnflash/content/feb2009/db2009026_918710.htm. Accessed 17 Dec 2014

  • Sudheer Pamidimarri DV, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364

    CAS  CrossRef  PubMed  Google Scholar 

  • Tang M, Sun J, Liu Y, Chen F, Shen S (2007) Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol 63:419–428

    CAS  CrossRef  PubMed  Google Scholar 

  • Tao YB, Luo L, He LL, Ni J, Xu ZF (2014) A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. J Plant Res 127(4):513–524

    CAS  CrossRef  PubMed  Google Scholar 

  • Thomas R, Sah NK, Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 9(4):315–324

    CAS  CrossRef  PubMed  Google Scholar 

  • Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D, Fukui K (2012) Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnol 29:137–143

    CAS  CrossRef  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang L, Gao J, Qin X, Shi X, Luo L, Zhang G, Yu H, Li C, Hu M, Liu Q, Xu Y, Chen F (2014) JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress. Mol Biol Rep. doi:10.1007/s11033-014-3831-0

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  CrossRef  PubMed  Google Scholar 

  • Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    CAS  CrossRef  Google Scholar 

  • Ye J, Liu P, Zhu C, Qu J, Wang X, Sun Y, Sun F, Jiang Y, Yue G, Wang C (2014a) Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genom 14(4):757–766

    CAS  CrossRef  Google Scholar 

  • Ye J, Qu J, Mao HZ, Ma ZG, Rahman NE, Bai C, Chen W, Jiang SY, Ramachandran S, Chua NH (2014b) Engineering geminivirus resistance in Jatropha curcus. Biotechnol Biofuels 7(1):149. doi:10.1186/s13068-014-0149-z

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhang L, Zhang S, Zhu S, Wu P, Chen Y, Li M, Jiang H, Wu G (2015) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. BMC Plant Biol 15(1):17

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang FL, Niu B, Wang YC, Chen F, Wang SH, Xu Y, Jiang LD, Gao S, Wu J, Tang L, Jia YJA (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174:510–518

    CAS  CrossRef  Google Scholar 

  • Zhang L, Zhang C, Wu P, Chen Y, Li M, Jiang H, Wu G (2014) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 9(5):e97878. doi:10.1371/journal.pone.0097878

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Y, Jiang L, Xu Y, Wang Y, Lu D, Chen F (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin (Shanghai) 39:787–794

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Cartagena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cartagena, J. (2017). Towards Varietal Improvement of Jatropha by Genetic Transformation. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_11

Download citation