Advertisement

Pyrolysis in Closed Systems

Chapter
  • 903 Downloads

Abstract

The reactions of coal and sapropelic kerogen in a closed system are reviewed. A range of chemical kinetic models that include primary and secondary reactions are described, including compositional models of vitrinite reflectance . Again, the primary hydrocarbon generation reactions are consistent with activation energies in the 50–56 kcal/mol range. Diverse published values from hydrous pyrolysis are shown to be caused by inadequate separation of transport and distributed reactivity effects. Oil composition fractionation from hydrous pyrolysis is shown to be similar to that in semi-open pyrolysis. Effects of hydrogen and hydrogen donors are also discussed, including kinetics for coal liquefaction and oil shale thermal solution.

Keywords

Autoclave pyrolysis Hydrous pyrolysis Hydropyrolysis Hydrothermal pyrolysis Vitrinite reflectance Vitrimat Compositional kinetic models Coal liquefaction Supercritical extraction Thermal solution Petroleum formation 

References

  1. 1.
    B. Horsfield, F. Leistner, K. Hall, Microscale sealed vessel pyrolysis, in Principles and Practice of Analytical Techniques in Geosciences, RSC Detection Science Series No. 4, ed. by K. Grice, (The Royal Society of Chemistry, 2015), pp. 209–250Google Scholar
  2. 2.
    M.D. Lewan, Evaluation of petroleum generation by hydrous pyrolysis. Phil Trans. Roy. Soc. Lond. A315, 123–134 (1985)CrossRefGoogle Scholar
  3. 3.
    D.W. van Krevelen, Coal. Typology-Chemistry-Physics-Constitution, Elsevier, 1961, pp. 120–126Google Scholar
  4. 4.
    D.W. van Krevelen, Coal—Topology, Chemistry, Physics, Constitution, Chap. 5, (Elsevier, 1993), pp. 158–164, 837–844Google Scholar
  5. 5.
    P.G. Hatcher, H.E. Lerch III, T.V. Verheyen, Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal. Int. J. Coal Geol. 16, 193–196 (1990)CrossRefGoogle Scholar
  6. 6.
    M. Monthioux, P. Landais, J.-C. Monin, Comparison between natural and artificial maturation series of humic coals from the Mahakam Delta, Indonesia. Org. Geochem. 8, 275–292 (1985)CrossRefGoogle Scholar
  7. 7.
    P. Landais, M. Monthioux, B. Poty, Simulation of natural coalification by high-pressure pyrolysis. Int. J. Coal Geol. 13, 99–126 (1989)CrossRefGoogle Scholar
  8. 8.
    P. Landais, R. Michels, M. Elie, Are time and temperature the only constraints to the simulation of organic matter maturation? Org. Geochem. 22, 617–630 (1994)CrossRefGoogle Scholar
  9. 9.
    R. Michels, P. Landais, Artificial coalification: comparison of confined pyrolysis and hydrous pyrolysis. Fuel 73, 1691–1696 (1994)CrossRefGoogle Scholar
  10. 10.
    L. Mansuy, P. Landais, O. Ruau, Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis. 1. Hydrocarbons and polar compounds. Energy Fuels 9, 691–703 (1995)CrossRefGoogle Scholar
  11. 11.
    L. Mansuy, P. Landais, Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis. 2. Water and polar compounds. Energy Fuels 9, 809–821 (1995)CrossRefGoogle Scholar
  12. 12.
    P. Landais, L. Gerard, Coalification stages from confined pyrolysis of an immature humic coal. Int. J. Coal Geol. 30, 285–301 (1996)CrossRefGoogle Scholar
  13. 13.
    D.W. van Krevelen, Coal—Topology, Chemistry, Physics, Constitution, Chap. 23, (Elsevier, 1993), pp. 699–701Google Scholar
  14. 14.
    M. Monthioux, Expected mechanisms in nature and in confined-system pyrolysis. Fuel 67, 843–847 (1988)CrossRefGoogle Scholar
  15. 15.
    J.D. Saxby, A.J.R. Bennett, J.F. Corcoran, D.E. Lambert, K.W. Riley, Petroleum generation: Simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin. Org. Geochem. 9, 69–81 (1986)CrossRefGoogle Scholar
  16. 16.
    A.K. Burnham, J.J. Sweeney, A chemical reaction model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta 53, 2649–2657 (1989)CrossRefGoogle Scholar
  17. 17.
    F. Behar, M. Vandenbroucke, S.C. Teermann, P.G. Hatcher, C. Leblond, O. Lerat, Experimental simulation of gas generation from coals and kerogen. Chem. Geol. 126, 247–260 (1995)CrossRefGoogle Scholar
  18. 18.
    F. Behar, M.D. Lewan, F. Lorant, M. Vandenbroucke, Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org. Geochem. 34, 575–600 (2003)CrossRefGoogle Scholar
  19. 19.
    J.T. Senftle, S.R. Larter, B.W. Bromley, J.H. Brown, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org. Geochem. 9, 345–350 (1986)CrossRefGoogle Scholar
  20. 20.
    W.-L. Huang, Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Org. Geochem. 24, 233–241 (1996)CrossRefGoogle Scholar
  21. 21.
    M. Dalla Torre, R.F. Mählmann, W.G. Ernst, Experimental study on the pressure dependence of vitrinite maturation. Geochim. Cosmochim. Acta 61, 2921–2928 (1997)CrossRefGoogle Scholar
  22. 22.
    N. Piedad-Sanchez, L. Martinez, A. Izart, I. Suarez-Ruiz, M. Elie, C. Menetrier, Artificial maturation of a high-volatile bituminous coal from Asturias (NW Spain) in a confined pyrolysis system. Part I. Petrographic, geochemical and molecular studies. J. Anal. Appl. Pyrol. 74, 61–76 (2005)CrossRefGoogle Scholar
  23. 23.
    R. Li, K. Jin, D.J. Lehrmann, Hydrocarbon potential of Pennsylvanian coal in Bohai Gulf Basin, Eastern China, as revealed by hydrous pyrolysis. Int. J. Coal Geol. 73, 88–97 (2008)CrossRefGoogle Scholar
  24. 24.
    R. Le Bayon, G.P. Brey, W.G. Ernst, R.F. Mählmann, Experimental study of organic matter maturation: time and pressure effects on vitrinite reflectance at 400 °C. Org. Geochem. 42, 340–355 (2011)CrossRefGoogle Scholar
  25. 25.
    C.N. Uguna, A.D. Carr, C.E. Snape, W. Meredith, M. Castro-Diaz, A laboratory pyrolysis study to investigate the effect of water pressure on hydrocarbon generation and maturation of coals in geological basins. Org. Geochem. 52, 103–113 (2012)CrossRefGoogle Scholar
  26. 26.
    C.N. Uguna, M.H. Azri, C.E. Snape, W. Meredith, A.D. Carr, A hydrous pyrolysis study to ascertain how gas yields and the extent of maturation for a partially matured source rock and bitumen in isolation compared to their whole source rock. J. Anal. Appl. Pyrol. 103, 268–277 (2013)CrossRefGoogle Scholar
  27. 27.
    C.N. Uguna, A.D. Carr, C.E. Snape, W. Meredith, High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions. Org. Geochem. 78, 44–51 (2015)CrossRefGoogle Scholar
  28. 28.
    A.L.D. Spigolon, M.D. Lewan, H.L. de Barros Penteado, L.F.C. Coutinho, Evaluation of the petroleum composition and quality with increasing thermal maturity as simulated by hydrous pyrolysis: a case study using a Brazilian source rock with Type I kerogen. Org. Geochem. 83–84, 27–53 (2015)CrossRefGoogle Scholar
  29. 29.
    J.J. Sweeney, A.K. Burnham, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990)Google Scholar
  30. 30.
    A.K. Burnham, Vitrimat2: A Modified Model of Vitrinite Maturation and Reflectance, (Lawrence Livermore National Laboratory Rept. UCID-219313, 1992), p. 10Google Scholar
  31. 31.
    A.K. Burnham, J.J. Sweeney, R.L. Braun, Development of Kinetic Models for Vitrinite Reflectance, (Lawrence Livermore National Laboratory Rept. UCRL-PRES-206527, 2004), p. 112 Google Scholar
  32. 32.
    N. Suzuki, H. Matsubayashi, D.W. Waples, A simpler kinetic model of vitrinite reflectance. AAPG Bulletin 77, 1502–1508 (1993)Google Scholar
  33. 33.
    C.E. Barker, M.D. Lewan, M.J. Pawlewicz, The influence of extractable organic matter on vitrinite reflectance suppression: a survey of kerogen and coal types. Int. J. Coal Geol. 70, 67–78 (2007)CrossRefGoogle Scholar
  34. 34.
    A.D. Carr, A vitrinite reflectance kinetic model incorporating overpressure retardation. Mar. Petrol. Geol. 16, 355–377 (1999)CrossRefGoogle Scholar
  35. 35.
    L.C. Price, C.E. Barker, Suppression of vitrinite reflectance in amorphous rich kerogen—a major unrecognized problem. J. Petr. Geol. 8, 59–84 (1985)CrossRefGoogle Scholar
  36. 36.
    S.B. Nielsen, O.R. Clausen, E. McGregor, Basin%Ro: a vitrinite reflectance model derived from basin and laboratory data, Basin Res., published on line (2015)Google Scholar
  37. 37.
    J.R. Smith, J.W. Smith, A relationship between the carbon and hydrogen content of coals and their vitrinite reflectance. Int. J. Coal Geol. 70, 79–86 (2007)CrossRefGoogle Scholar
  38. 38.
    F. Behar, M. Vandenbroucke, Y. Tang, F. Marquis, J. Espitalié, Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oils and gas generation. Org. Geochem. 26, 321–339 (1997)CrossRefGoogle Scholar
  39. 39.
    F. Behar, F. Lorant, M. Lewan, Role of NSO compounds during primary cracking of a Type II kerogen and Type III lignite. Org. Geochem. 39, 1–22 (2008)CrossRefGoogle Scholar
  40. 40.
    A.K. Burnham, J.J. Sweeney, Reply to comments by S. B. Nielsen and T. Barth on ‘A chemical kinetic model of vitrinite maturation and reflectance’. Geochim. Cosmochim. Acta 55, 643–644 (1991)CrossRefGoogle Scholar
  41. 41.
    A.K. Burnham, A.M. Samoun, J.G. Reynolds, Characterization of petroleum source rocks by pyrolysis-mass spectrometry gas evolution profiles, (Lawrence Livermore National Laboratory Rept. UCRL-ID-111012, 1991), p. 32Google Scholar
  42. 42.
    J.G. Reynolds, A.K. Burnham, Pyrolysis kinetics and maturation of coals from the San Juan Basin. Energy Fuels 7, 610–619 (1993)CrossRefGoogle Scholar
  43. 43.
    A.K. Burnham, B.J. Schmidt, R.L. Braun, A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 23, 931–939 (1995)CrossRefGoogle Scholar
  44. 44.
    H.J. Schenk, B. Horsfield, Using natural maturation series to evaluate the utility of parallel reaction kinetics models: an investigation of Toarcian shales and Carboniferous coals, Germany. Org. Geochem. 29, 137–154 (1998)CrossRefGoogle Scholar
  45. 45.
    V. Dieckmann, R. Ondrak, B. Cramer, B. Horsfield, Deep basin gas: new insights from kinetic modelling and isotopic fractionation in deep-formed gas precursors. Mar. Petrol. Geol. 23, 183–199 (2006)CrossRefGoogle Scholar
  46. 46.
    M. Erdmann, B. Horsfield, Enhanced late gas generation potential of petroleum source rocks via recombination reactions: evidence from the Norwegian North Sea. Geochim. Cosmochim. Acta 70, 3943–3956 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Whelan, R.M. Carangelo, P.R. Solomon, W.G. Dow, TG/Plus—a pyrolysis method for following maturation of oil and gas generation zones using Tmax of methane. Org. Geochem. 16, 1187–1202 (1989)CrossRefGoogle Scholar
  48. 48.
    A.K. Burnham, R.L. Braun, Global kinetic analysis of complex materials. Energy Fuels 13, 1–22 (1999)CrossRefGoogle Scholar
  49. 49.
    B. Tissot, B. Durand, J. Espitalié, A. Combaz, Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull. 58, 499–506 (1974)Google Scholar
  50. 50.
    J.J. Sweeney, A.K. Burnham, R.L. Braun, A model of hydrocarbon generation from Type I kerogen: application to Uinta Basin. Utah, AAPG Bull. 71, 967–985 (1987)Google Scholar
  51. 51.
    B. Tissot, J. Espitalié, L’evolution thermique de la matiere organique des sediments: applications d’une simulation mathematique potential petrolier des bassins sedimentaires et reconstitution de l’history des sediments. Rev. Inst. Français Pétrole 30, 743–777 (1975)CrossRefGoogle Scholar
  52. 52.
    M.D. Lewan, J.C. Winters, J.H. McDonald, Generation of oil-like pyrolysates from organic-rich shales. Science 203, 879–899 (1979)CrossRefGoogle Scholar
  53. 53.
    J.C. Winters, J.A. Williams, M.D. Lewan, A laboratory study of petroleum generation by hydrous pyrolysis (Wiley, In Advances in Organic Geochemistry, 1981), pp. 524–533Google Scholar
  54. 54.
    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)CrossRefGoogle Scholar
  55. 55.
    R.J. Evans, G.T. Felbeck Jr., High-temperature simulation of petroleum formation—I. The pyrolysis of Green River shale. Org. Geochem. 4, 135–144 (1983)CrossRefGoogle Scholar
  56. 56.
    J.D. Saxby, K.W. Riley, Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature 308, 177–179 (1984)CrossRefGoogle Scholar
  57. 57.
    B.J. Huizinga, Z.A. Aizenshtat, K.E. Peters, Programmed pyrolysis chromatograph of artificially matured Green River kerogen. Energy Fuels 2, 74–81 (1988)CrossRefGoogle Scholar
  58. 58.
    T.E. Ruble, M.D. Lewan, R.P. Philp, New insights on the Green River petroleum system in the Uinta Basin from hydrous pyrolysis. AAPG Bull. 85, 1333–1371 (2001)Google Scholar
  59. 59.
    W.F. Johnson, D.K. Walton, H.H. Keller, E.J. Crouch, In situ retorting of oil shale rubble: a model of heat transfer and product formation in oil shale particles. Colo. Sch. Mines Quart. 70, 237–272 (1975)Google Scholar
  60. 60.
    A.K. Burnham, A.E. Pomerantz, F. Gelin, Oil, bitumen, and other confusing concepts: what do laboratory experiments really tell us? AAPG Hedberg Conference, Santa Barbara, CA, April 3–6, 2016Google Scholar
  61. 61.
    F. Behar, S. Roy, D. Jarvie, Artificial maturation of a Type I kerogen in closed system: mass balance and kinetic modeling. Org. Geochem. 41, 1235–1247 (2010)CrossRefGoogle Scholar
  62. 62.
    D.J. Curry, New insights on the Green River petroleum system from hydrous pyrolysis experiments: discussion. AAPG Bull. 87, 1531–1534 (2003)CrossRefGoogle Scholar
  63. 63.
    E.W. Tegelaar, R.A. Noble, Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org. Geochem. 22, 543–574 (1994)CrossRefGoogle Scholar
  64. 64.
    M.D. Lewan, T.E. Ruble, Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem. 33, 1457–1475 (2002)CrossRefGoogle Scholar
  65. 65.
    A.B. Hubbard, W.E. Robinson, A Thermal Decomposition Study of Colorado Oil Shale, U.S. Bureau of Mines Rept. Inv. 4744, U.S. Dept. Interior, 1950Google Scholar
  66. 66.
    M.D. Lewan, Reply to the comment by A. K. Burnham on ‘Experiments on the role of water in petroleum formation’, Geochem. Cosmochim. Acta 62, 2211–2216 (1998)Google Scholar
  67. 67.
    J.J. Sweeney, R.L. Braun, A.K. Burnham, S. Talukdar, C. Vallejos, Chemical kinetic model of hydrocarbon generation, expulsion, and destruction applied to the Maracaibo Basin. Venezuela, AAPG Bull. 79, 1515–1532 (1995)Google Scholar
  68. 68.
    F.P. Miknis, T.F. Turner, G.L. Berdan, P.J. Conn, Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales. Energy Fuels 1, 477–483 (1987)CrossRefGoogle Scholar
  69. 69.
    F.P. Miknis, T.F. Turner, The bitumen intermediate in isothermal and nonisothermal decomposition of oil shales, in Composition, Geochemistry and Conversion of Oil Shales, ed. by C. Snape, NATO ASI Series vol 455, Kluwer, 1995, pp. 295–311Google Scholar
  70. 70.
    T.-V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)CrossRefGoogle Scholar
  71. 71.
    H. Freund, J.A. Clouse, G.A. Otten, Effect of pressure on the kinetics of kerogen pyrolysis. Energy Fuels 7, 1088–1094 (1993)CrossRefGoogle Scholar
  72. 72.
    R. Michels, P. Landais, B.E. Torkelson, R.P. Philp, Effects of effluents and water pressure on oil generation during confined pyrolysis and high-pressure hydrous pyrolysis. Geochim. Cosmochim. Acta 59, 1589–1604 (1995)CrossRefGoogle Scholar
  73. 73.
    J. Tomic, F. Behar, M. Vandenbroucke, Y. Tang, Artificial maturation of Monterey (Type II-S) in a closed system and comparison with Type II kerogen: implications on the fate of sulfur. Org. Geochem. 23, 647–660 (1995)CrossRefGoogle Scholar
  74. 74.
    J.S. Sinninghe Damsté, M.E.L. Kohnen, B. Horsfield, Origin of low-molecular-weight alkylthiophenes in pyrolysates of sulfur-rich kerogens as revealed by micro-scale sealed vessel pyrolysis. Org. Geochem. 29, 1891–1903 (1998)CrossRefGoogle Scholar
  75. 75.
    D.K. Baskin, K.E. Peters, Early generation characteristics of a sulfur-rich Monterey kerogen. AAPG Bull. 76, 1–13 (1992)Google Scholar
  76. 76.
    M.P. Koopmans, W.I.C. Rijpstra, J.W. de Leeuw, M.D. Lewan, J.S. Sinninghe, Damsté, Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation, Jordan. Org. Geochem. 28, 503–521 (1998)CrossRefGoogle Scholar
  77. 77.
    M.D. Lewan, M.J. Kotarba, J.B. Curtis, D. Wieclaw, P. Kosakowski, Oil-generation kinetics for organic facies with Type-II and –IIS kerogen in the Menilite shales of the Polish Carpathians. Geochim. Cosmochim. Acta 70, 3351–3368 (2006)CrossRefGoogle Scholar
  78. 78.
    F. Behar, D.M. Jarvie, Compositional modeling of gas generation from two shale gas resource systems: Barnett shale (United States) and Posidonia shale (Germany), in Critical Assessment of Shale Resource Plays, AAPG Memoir 103, 2013, pp. 25–44Google Scholar
  79. 79.
    R.L. Braun, A.K. Burnham, Mathematical model of oil generation, degradation, and expulsion. Energy Fuels 4, 132–146 (1990)CrossRefGoogle Scholar
  80. 80.
    H.J. Schenk, B. Horsfield, Kinetics of petroleum generation by programmed-temperature closed- versus open-system pyrolysis. Geochim. Cosmochim. Acta 57, 623–630 (1993)CrossRefGoogle Scholar
  81. 81.
    H.J. Schenk, R. di Primio, B. Horsfield, The conversion of oil into gas in petroleum reservoirs. Part 1: comparative kinetic investigation of gas generation from crude oils of lacustrine, marine, and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Org. Geochem. 26, 457–481 (1997)CrossRefGoogle Scholar
  82. 82.
    A. Amrani, M.D. Lewan, Z. Aizenshtat, Stable sulfur isotope partitioning during petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochim. Cosmochim. Acta 69, 5317–5331 (2005)CrossRefGoogle Scholar
  83. 83.
    W.L. Orr, Evaluating kerogen sulfur content from crude oil properties: cooperative Monterey organic geochemistry study, in The Monterey Formation: From Rocks to Molecules, ed. by C.M. Isaacs, J. Rullkötter, (Columbia University Press, 2001), pp. 348–367Google Scholar
  84. 84.
    A.K. Burnham, R.L. Braun, Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Org. Geochem. 16, 27–39 (1990)CrossRefGoogle Scholar
  85. 85.
    A.K. Burnham, Comment on ‘Experiments on the role of water in petroleum formation’ by M.D. Lewan. Geochem. Cosmochim. Acta 62, 2207–2210 (1998)Google Scholar
  86. 86.
    T.E. Ruble, M.D. Lewan, R.P. Philp, New insights on the Green River petroleum system in the Uinta Basin from hydrous-pyrolysis experiments: reply. AAPG Bull. 87, 1535–1541 (2003)CrossRefGoogle Scholar
  87. 87.
    J.G. Stainforth, Practical kinetic modeling of petroleum generation and expulsion. Mar. Petrol. Geol. 26, 552–572 (2009)CrossRefGoogle Scholar
  88. 88.
    M.D. Lewan, Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 61, 3691–3723 (1997)CrossRefGoogle Scholar
  89. 89.
    P. Hanbaba, Reaktionkinetische Untersuchungen sur Kohlenwasserstoffen bindung aus Steinkohlen bie niedregen Aufheizgeschwindigkeiten. Dissertation, University of Aachen, 1967Google Scholar
  90. 90.
    R.L. Braun, A.K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1, 153–161 (1987)CrossRefGoogle Scholar
  91. 91.
    J.G. Reynolds, A.K. Burnham, T.O. Mitchell, Kinetic analysis of California petroleum source rocks by programmed temperature micropyrolysis. Org. Geochem. 23, 109–120 (1995)CrossRefGoogle Scholar
  92. 92.
    S. Vyazovkin, C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53–68 (1999)CrossRefGoogle Scholar
  93. 93.
    A.K. Burnham, A simple kinetic model of oil generation, vaporization, coking, and cracking. Energy Fuels 29, 7156–7167 (2015). Correction: doi: 10.1021/acs.energyfuels.6b00406
  94. 94.
    A.K. Burnham, R.L. Braun, General kinetic model of oil shale pyrolysis. Situ 9, 1–23 (1985)Google Scholar
  95. 95.
    R.L. Braun, A.K. Burnham, Thermal cracking of hydrocarbons, (Lawrence Livermore National Laboratory Rept. UCID-21507, 1988), p. 22Google Scholar
  96. 96.
    A.K. Burnham, A Simple Kinetic Model of Petroleum Formation and Cracking, (Lawrence Livermore National Laboratory Rept. UCID-21665, 1986), p. 11Google Scholar
  97. 97.
    R.L. Braun, A.K. Burnham, PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Org. Geochem. 19, 161–172 (1992)CrossRefGoogle Scholar
  98. 98.
    R.L. Braun, A.K. Burnham, User’s Manual for PMOD, A Pyrolysis and Primary migration Model, (Lawrence Livermore National Laboratory Rept. UCRL-MA-107789 Rev. 1, 1993), p. 74Google Scholar
  99. 99.
    R.L. Braun, A.K. Burnham, Chemical Reaction Model for Oil and Gas Generation from Type I and II Kerogen, (Lawrence Livermore National Laboratory Rept. UCID-ID-114143, 1993), p. 26Google Scholar
  100. 100.
    A.K. Burnham, J.J. Sweeney, Modeling the Maturation and Migration of Petroleum, in Handbook of Petroleum Geology, Chap. 5, ed. by N.H. Foster, E.A. Beaumont, AAPG, Tulsa OK, 1991, pp. 55–63Google Scholar
  101. 101.
    D.R. Leavitt, A.L. Tyler, A.S. Kafesjian, Kerogen decomposition kinetics of selected Green River and Eastern U.S. oil shales from thermal solution experiments. Energy Fuels 1, 520–525 (1987)CrossRefGoogle Scholar
  102. 102.
    J.C. Monin, J. Connan, J.L. Oudin, B. Durand, Quantitative and qualitative experimental approach of oil and gas generation: application to the North Sea source rocks. Org. Geochem. 16, 133–142 (1990)CrossRefGoogle Scholar
  103. 103.
    A.K. Burnham, R.L. Braun, J.J. Sweeney, J.G. Reynolds, C. Vallejos, S. Talukdar, Kinetic Modeling of Petroleum Formation in the Maracaibo Basin: Final Report, U. S. Department of Energy Report DOE/BC/92001051, 1992, 132 ppGoogle Scholar
  104. 104.
    A.K. Burnham, B. Dahl, Compositional modelling of kerogen maturation, Poster Sessions from the 16th International Meeting on Organic Geochemistry, Stavanger, 1993, pp. 241–246Google Scholar
  105. 105.
    J. Espitalié, P. Ungerer, I. Irwin, F. Marquis, Primary cracking of kerogens. Experimenting and modelling C1, C2–C5, C5–C15, and C15+ classes of hydrocarbons formed. Org. Geochem. 13, 893–899 (1988)CrossRefGoogle Scholar
  106. 106.
    A.K. Burnham, H.R. Gregg, R.L. Braun, Unraveling the kinetics of petroleum destruction by using 1, 2-13C isotopically labeled dopants. Energy Fuels 9, 190–191 (1995)CrossRefGoogle Scholar
  107. 107.
    R.C. Neavel, Liquefaction of coal in hydrogen-donor and non-donor vehicles. Fuel 55, 237–242 (1976)CrossRefGoogle Scholar
  108. 108.
    D.W. van Krevelen, Coal. Typology-Chemistry-Physics-Constitution, (Elsevier, 1961), pp. 201–218Google Scholar
  109. 109.
    S. Vasireddy, B. Morreale, A. Cugini, C. Song, J.J. Spivey, Clean liquids fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges. Energy Envir. Sci. 4, 311–345 (2011)CrossRefGoogle Scholar
  110. 110.
    K.K. Robinson, Reaction engineering of direct coal liquefaction. Energies 2, 976–1006 (2009)CrossRefGoogle Scholar
  111. 111.
    S. Weller, M.G. Pelipetz, S. Friedman, Kinetics of coal hydrogenation: conversion of asphalt. Ind. Eng. Chem. 43, 1572–1575 (1951)CrossRefGoogle Scholar
  112. 112.
    S. Weller, M.G. Pelipetz, S. Friedman, Kinetics of coal hydrogenation: conversion of anthraxylon. Ind. Eng. Chem. 43, 1575–1579 (1951)CrossRefGoogle Scholar
  113. 113.
    L.L. Anderson, Coal liquefaction kinetics, in Clean Utilization of Coal: Coal Structure and Reactivity, Cleaning, and Environmental Aspects, ed. by Y. Yurum, NATO ASI Series C: vol. 370, Kluwer, 1992, pp. 39–48Google Scholar
  114. 114.
    A.P. Oele, H.I. Waterman, M.L. Goedkoop, D.W. van Krevelen, Extractive disintegration of bituminous coals. Fuel 30, 169–178 (1951)Google Scholar
  115. 115.
    K. Das, Solvent and Supercritical Fluid Extraction of Oil Shale: A Literature Survey, U.S. Dept. of Energy Technical Note DE89011708, 1989Google Scholar
  116. 116.
    W.E. Robinson, J.J. Cummins, Composition of low-temperature thermal extracts from Colorado oil shale. J. Chem. Eng. Data 5, 74–80 (1960)CrossRefGoogle Scholar
  117. 117.
    J.F. Patzer II, W.G. Moon, G.L. Johns, A.B. King, Kinetic and reaction engineering model for thermal solution of oil shale in FCC decant oil. Chem. Eng. Sci. 41, 1005–1011 (1986)CrossRefGoogle Scholar
  118. 118.
    I. Johannes, L. Tiikma, H. Luik, G. Sărajeva, Thermal extraction of oil from a Utah Green River (USA) oil shale in autoclaves. Intl. J. Eng. Appl. Sci. 6, 23–35 (2015)Google Scholar
  119. 119.
    S.D. Carter, T.L. Robl, A.M. Rubel, D.N. Taulbee, Processing of eastern US oil shale in a multistaged fluidized bed system. Fuel 69, 1124–1128 (1990)CrossRefGoogle Scholar
  120. 120.
    M.J. Roberts, D.M. Rue, F.S. Lau, Pressurized fluidized-bed hydroretorting of six eastern shales in batch and continuous laboratory-scale reactors. Fuel 71, 335–341 (1992)CrossRefGoogle Scholar
  121. 121.
    R.M. Baldwin, K.W. Chen, Pyrolysis and hydropyrolysis of two carbonaceous Australian oil shales in supercritical toluene and tetralin. Fuel 66, 353–357 (1987)CrossRefGoogle Scholar
  122. 122.
    L. Tiikma, I. Johannes, J. Luik, A. Zaidentstal, N. Vink, Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol. 85, 502–507 (2009)CrossRefGoogle Scholar
  123. 123.
    L. Tiikma, I. Johannes, J. Luik, A. Lepp, G. Sharayeva, Extraction of oil from Jordanian Attarat oil shale. Oil Shale 32, 218–239 (2015)CrossRefGoogle Scholar
  124. 124.
    R.M. Baldwin, J.A. Manley, Pyrolysis and hydropyrolysis of Kentucky oil shale in supercritical toluene under rapid heating conditions. Fuel Proc. Technol. 17, 201–207 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LivermoreUSA

Personalised recommendations