Advertisement

Pyrolysis in Open Systems

Chapter

Abstract

Methods are reviewed for how to measure pyrolysis kinetics under atmospheric or lower pressure. The effects of heat and mass transfer on apparent chemical reaction rates are discussed, including limits for heating rates and sample size and geometry that result in the sufficiently accurate temperature measurements. Evidence for sequential versus parallel reaction mechanisms is described, including common misinterpretations in the literature. The competition between oil and tar vaporization and coking is outlined, including how it affects product yields and composition. Kinetic parameters for coal, sapropelic kerogens, and asphaltenes are reviewed, with the conclusion that principal activation energies outside the range of about 50–56 kcal/mol are not credible. Relevant global models range from sigmoidal to distributed reactivity depending on the kerogen structure.

Keywords

Open-system kinetics Pyrolysis kinetics Kerogen pyrolysis Coal pyrolysis Activation energy distributions DAEM Asphaltenes Extended Prout-Tompkins model Bitumen intermediate Oil coking Pyromat II 

References

  1. 1.
    J.B. Howard, Fundamentals of coal pyrolysis and hydropyrolysis, in Chemistry of Coal Utilization, 2nd Suppl. Vol, Chap. 12, ed. by M.A. Elliot (Wiley, 1981) pp. 665–784Google Scholar
  2. 2.
    P.R. Solomon, M.A. Serio, E.M. Suuberg, Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog. Energy Combust. Sci. 18, 133–220 (1992)CrossRefGoogle Scholar
  3. 3.
    A.K. Burnham, R.L. Braun, Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Org. Geochem. 16, 27–39 (1990)CrossRefGoogle Scholar
  4. 4.
    M.D. Lewan, Evaluation of petroleum generation by hydrous pyrolysis experimentation. Phil. Trans. R. Soc. Lond. A 315, 123–134 (1985)CrossRefGoogle Scholar
  5. 5.
    F. Behar, M. Vandenbroucke, Y. Tang, F. Marquis, J. Espitalié, Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Org. Geochem. 26, 321–339 (1997)CrossRefGoogle Scholar
  6. 6.
    B. Horsfield, Evaluating kerogen type according to source quality, compositional heterogeneity and thermal lability. Rev. Palaeobot. Palynol. 65, 357–365 (1990)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    http://www.sranalyzer.com/. Accessed 7 Aug 2016
  9. 9.
    https://wildcattechnologies.com/. Accessed 7 Aug 2016
  10. 10.
    A.K. Burnham, R.L. Braun, H.R. Gregg, A.M. Samoun, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels 1, 452–458 (1987)CrossRefGoogle Scholar
  11. 11.
    P.R. Solomon, T.H. Fletcher, R.J. Pugmire, Progress in coal pyrolysis. Fuel 72, 587–597 (1993)CrossRefGoogle Scholar
  12. 12.
    A.K. Burnham, Obtaining reliable phenomenological chemical kinetic models for real-world applications. Thermochim. Acta 597, 35–40 (2014)CrossRefGoogle Scholar
  13. 13.
    K.E. Peters, A.K. Burnham, C.C. Walters, Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis. AAPG Bull. 99, 591–616 (2015)CrossRefGoogle Scholar
  14. 14.
    R.L. Braun, A.K. Burnham, J.G. Reynolds, J.E. Clarkson, Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy Fuels 5, 192–204 (1991)CrossRefGoogle Scholar
  15. 15.
    A.K. Burnham, R.L. Braun, A.M. Samoun, Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Org. Geochem. 13, 839–845 (1988)CrossRefGoogle Scholar
  16. 16.
    J.H. Campbell, G.J. Koskinas, N.D. Stout, Oil shale retorting: effects of particle size and heating rate on oil evolution and intraparticle oil degradation. Situ 2, 1–47 (1978)Google Scholar
  17. 17.
    R.E. Lyon, N. Safronova, J. Senese, S. Stoliarov, Thermokinetic model of sample response in nonisothermal analysis. Thermochim. Acta 545, 82–89 (2012)CrossRefGoogle Scholar
  18. 18.
    M.R. Hajaligo, W.A. Peters, J.B. Howard, Intraparticle nonisothermalities in coal pyrolysis. Energy Fuels 2, 430–437 (1988)CrossRefGoogle Scholar
  19. 19.
    Y.-C. Lin, J. Cho, G.A. Tompsett, P.R. Westmoreland, G.W. Huber, Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113, 20097–20107 (2009)CrossRefGoogle Scholar
  20. 20.
    A.K. Burnham, R.K. Weese, Thermal Decomposition Kinetics of HMX, LLNL Report UCRL-TR-204262-Rev-1 (2004), https://e-reports-ext.llnl.gov/pdf/314135.pdf
  21. 21.
    A.K. Burnham, Oil evolution from a self-purging reactor: kinetics and composition at 2 °C/min and 2 °C/h. Energy Fuels 5, 205–214 (1991)CrossRefGoogle Scholar
  22. 22.
    J. DuBow, R. Nottenburg, K. Rajeshwar, R. Rosenvold, in Electrical and thermal transport properties of Green River oil shale heated in nitrogen, Proceedings of 10th Oil Shale Symposium, Golden, CO, October 1977. http://www.costar-mines.org/oss_archive/files/10OSSP/Electrical_and_Thermal_Transport_Properties_of%20_Green_River_Oil_Shale_Heated_in_Nitrogen.pdf
  23. 23.
    J.D. Freihaut, W.M. Proscia, Tar evolution in heated-grid apparatus. Energy Fuels 3, 625–635 (1989)CrossRefGoogle Scholar
  24. 24.
    A.B. Hubbard, W.E. Robinson, A Thermal Decomposition Study of Colorado Oil Shale, U.S. Bureau of Mines Rept. Inv. 4744, U.S. Dept. Interior, 1950Google Scholar
  25. 25.
    R.H. McKee, E.E. Lyder, The thermal decomposition of shales. I—heat effects. Ind. Eng. Chem. 13, 613–618 (1921)CrossRefGoogle Scholar
  26. 26.
    W.F. Johnson, D.K. Walton, H.H. Keller, E.J. Crouch, In situ retorting of oil shale rubble: a model of heat transfer and product formation in oil shale particles. Colo. Sch. Mines Quart. 70, 237–272 (1975)Google Scholar
  27. 27.
    R.F. Cane, In The Mechanism of Pyrolysis of Torbanite, ed. by G. Sell, Oil Shale and Cannel Coal, vol 2, Inst. Petrol., 1951, pp. 592–604Google Scholar
  28. 28.
    A.K. Burnham, A simple kinetic model of oil generation, vaporization, coking, and cracking. Energy Fuels 29, 7156–7167 (2015). Correction: doi: 10.1021/acs.energyfuels.6b00406
  29. 29.
    F.P. Miknis, T.F. Turner, G.L. Berdan, P.J. Conn, Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales. Energy Fuels 1, 477–483 (1987)CrossRefGoogle Scholar
  30. 30.
    J.J. Cummins, W.E. Robinson, Thermal Degradation of Green River Kerogen at 150° to 350° C, U.S. Bureau of Mines Rept. Inv. 7620, U.S. Dept. Interior, 1972Google Scholar
  31. 31.
    R.L. Braun, A.J. Rothman, Oil-shale pyrolysis: kinetics and mechanism of oil production. Fuel 54, 129–131 (1975)CrossRefGoogle Scholar
  32. 32.
    E.R. Ziegel, J.W. Gorman, Kinetic modelling with multiresponse data. Technometrics 22, 139–151 (1980)CrossRefGoogle Scholar
  33. 33.
    F.P. Miknis, T.F. Turner, in The Bitumen Intermediate In Isothermal And Nonisothermal Decomposition Of Oil Shales, ed. by C. Snape, Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455, Kluwer, 1995, pp. 295–311Google Scholar
  34. 34.
    A.K. Burnham, J.R. McConaghy, Semi-open pyrolysis of oil shale from the Garden Gulch Member of the Green River Formation. Energy Fuels 28, 7426–7439 (2014). Correction: doi: 10.1021/acs.energyfuels.5b02010
  35. 35.
    T.T. Coburn, R.W. Taylor, C.J. Morris, V. Duval, Isothermal pyrolysis and char combustion of oil shales, in Proceedings of 21st Oil Shale Symposium, Beijing, China, May 1988, pp. 245–252Google Scholar
  36. 36.
    A.K. Burnham, R.L. Braun, T.T. Coburn, E.I. Sandvik, D.J. Curry, B.J. Schmidt, R.A. Noble, An appropriate kinetic model for well-preserved algal kerogens. Energy Fuels 10, 49–59 (1996)CrossRefGoogle Scholar
  37. 37.
    P.H. Wallman, P.W. Tamm, B.G. Spars, Oil shale retorting kinetics, in Oil Shale, Tar Sands, and Related Materials, ACS Symp. Ser. 163, H. C. Stauffer, ed., American Chemical Society, 1981, pp. 93–113Google Scholar
  38. 38.
    J.H. Campbell, G.J. Koskinas, N.D. Stout, Kinetics of oil generation from Colorado oil shale. Fuel 57, 372–376 (1978)CrossRefGoogle Scholar
  39. 39.
    N.D. Stout, G.J. Koskinas, J.H. Raley, S.D. Santor, R.J. Opila, A.J. Rothman, Pyrolysis of oil shale: the effects of thermal history on oil yield. Colo. Sch. Mines Quart. 71, 153–172 (1976)Google Scholar
  40. 40.
    A.K. Burnham, Chemistry and kinetics of oil shale retorting, in Oil Shale: A Solution to the Liquid Fuel Dilemma, ACS Symposium Series. 1032, O.I. Ogunsola, A.M. Hartstein, O. Ogunsola, eds., (American Chemical Society, 2010), pp. 115–134Google Scholar
  41. 41.
    A.K. Burnham, Chemistry of shale oil cracking, in Oil Shale, Tar Sands, and Related Materials, ACS Symposium Series 163, H.C. Stauffer, ed., (American Chemical Society, 1981), pp. 39–60Google Scholar
  42. 42.
    A.K. Burnham, R.L. Braun, General kinetic model of oil shale pyrolysis. Situ 9, 1–23 (1985)Google Scholar
  43. 43.
    A.M. Rubel, T.T. Coburn, Influence of retorting parameters on oil yield from Sunbury and Ohio shales from Northeastern Kentucky, in Proceedings of 1981 Eastern Oil Shale Symposium (Lexington, KY, 1981), pp. 21–28Google Scholar
  44. 44.
    J.W. Bunger, T. Plikas, Kinetics of Shale Oil Production, in Proceedings of 34th Oil Shale Symposium, Golden, CO, Oct 2014Google Scholar
  45. 45.
    H.J. Schenk, V. Dieckmann, Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations. Mar. Petrol. Geol. 21, 79–95 (2004)CrossRefGoogle Scholar
  46. 46.
    R.C. Ryan, T.D. Fowler, G.L. Beer, V. Nair, Shell’s in situ conversion process—from laboratory to field pilots, in Oil Shale: A Solution to the Liquid Fuel Dilemma, ACS Symposium Series 1032, O.I. Ogunsola, A.M. Hartstein, O. Ogunsola, eds., (American Chemical Society, 2010), pp. 161–183Google Scholar
  47. 47.
    A.M. Rubel, Comparison of oils produced from Kentucky oil shales by fluid bed and Fischer Assay retorting. Liquid Fuels Tech. 3, 277–304 (1985)CrossRefGoogle Scholar
  48. 48.
    W.B. Warren, Carbonization of coal. Evaluation of effects of rate of heating and of maximum temperature on pyrolysis of a coking coal. Ind. Eng. Chem. 27, 72–76 (1935)CrossRefGoogle Scholar
  49. 49.
    W.B. Warren, Carbonization of typical bituminous coal. Effect of rate of heating and final maximum temperature. Ind. Eng. Chem. 30, 136–141 (1938)CrossRefGoogle Scholar
  50. 50.
    W.B. Warren, Carbonization of coal. Effects of variation of rate of heating during the carbonization of a typical coking coal. Ind. Eng. Chem. 30, 1350–1354 (1938)CrossRefGoogle Scholar
  51. 51.
    D.W. van Krevelen, Coal—Topology, Chemistry, Physics, Constitution, Chap. 23, (Elsevier, 1993), pp. 675–688Google Scholar
  52. 52.
    K. Rajeshwar, D.B. Jones, J.B. DuBow, Characterization of oil shales by differential scanning calorimetry. Anal. Chem. 53, 121–122 (1981)CrossRefGoogle Scholar
  53. 53.
    A.W. Coats, J.P. Redfern, Thermogravimetric Analysis. Analyst 88, 906–924 (1963)CrossRefGoogle Scholar
  54. 54.
    R.M. Carangelo, P.R. Solomon, D.J. Gerson, Application of TG-FT-i.r. to study hydrocarbon structure and kinetics. Fuel 66, 960–967 (1987)CrossRefGoogle Scholar
  55. 55.
    J. Whelan, R. Carangelo, P.R. Solomon, W.G. Dow, TG/Plus—a pyrolysis method for following maturation of oil and gas generation zones using Tmax of methane. Org. Geochem. 16, 1187–1201 (1990)CrossRefGoogle Scholar
  56. 56.
    P.R. Solomon, M.A. Serio, R.M. Carangelo, R. Bassilakis, Z.Z. Yu, S. Charpenay, J. Whelan, Analysis of coal by thermogravimetry-Fourier transform infrared spectroscopy and pyrolysis modeling. J. Anal. Appl. Pyrol. 19, 1–14 (1991)CrossRefGoogle Scholar
  57. 57.
    J. Espitalié, J.L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, A. Boutefeu, Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Rev. Inst. Français Pétrole 32, 23–43 (1977)CrossRefGoogle Scholar
  58. 58.
    P. Ungerer, R. Pelet, Extrapolation of the kinetics of oil and gas generation from laboratory experiments to sedimentary basins. Nature 327, 52–54 (1987)CrossRefGoogle Scholar
  59. 59.
    D.B. Anthony, J.B. Howard, Coal devolatilization and hydrogasification. AIChE J. 22, 625–656 (1976)CrossRefGoogle Scholar
  60. 60.
    P.R. Solomon, D.G. Hamblen, Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)CrossRefGoogle Scholar
  61. 61.
    G.J. Pitt, The kinetics of the evolution of volatile products from coal. Fuel 41, 267–274 (1962)Google Scholar
  62. 62.
    P. Hanbaba, Reaktionkinetische Untersuchungen sur Kohlenwasserstoffenbindung aus Steinkohlen bie niedregen Aufheizgeschwindigkeiten. Dissertation, University of Aachen, 1967Google Scholar
  63. 63.
    B. Tissot, J. Espitalié, L’evolution thermique de la matiere organicque des sediments: applications d’une simulation mathematique. Rev. Inst. Français Pétrole 30, 743–777 (1975)CrossRefGoogle Scholar
  64. 64.
    J.H. Campbell, G. Gallegos, M. Gregg, Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel 59, 727–732 (1980)CrossRefGoogle Scholar
  65. 65.
    R.L. Braun, A.K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1, 153–161 (1987)CrossRefGoogle Scholar
  66. 66.
    A.K. Burnham, R.L. Braun, Global kinetic analysis of complex materials. Energy Fuels 13, 1–22 (1999)CrossRefGoogle Scholar
  67. 67.
    D.W. Waples, J.E. Leonard, R. Coskey, S. Safwat, R. Nagdy, A new method for obtaining personalized kinetics from archived Rock-Eval data, applied to the Bakken Formation, Williston Basin, AAPG International Convention, Calgary, AAPG Search and Discovery Article #90108; also AAPG Explorer, Nov 2010Google Scholar
  68. 68.
    J.G. Reynolds, A. Murray, Pyromat II Micropyrolysis of Source Rocks and Oil Shales: Effects of Native Content and Sample Size on Tmax Values and Kinetic Parameters, Lawrence Livermore National Laboratory Rept. UCRL-ID-106505, 1991, 24 ppGoogle Scholar
  69. 69.
    K.E. Peters, C.C. Walters, P.J. Mankiewicz, Evaluation of kinetic uncertainty in numerical models of petroleum generation. AAPG Bull. 90, 387–403 (2006)CrossRefGoogle Scholar
  70. 70.
    K.E. Peters, A.K. Burnham, C.C. Walters, Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis: reply, AAPG Bull. (2016)Google Scholar
  71. 71.
    A.K. Burnham, Pyrolysis Kinetics for the Bakken Shale, Lawrence Livermore National Laboratory Rept. UCRL-ID-109622, 1992, 15 ppGoogle Scholar
  72. 72.
    T.V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A.E. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)CrossRefGoogle Scholar
  73. 73.
    J.G. Reynolds, A.K. Burnham, T.O. Mitchell, Kinetic analysis of California petroleum source rocks by programmed temperature micropyrolysis. Org. Geochem. 23, 109–120 (1995)CrossRefGoogle Scholar
  74. 74.
    A.K. Burnham, R.L. Braun, R.W. Taylor, T.T. Coburn, Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: implications for kerogen structure. Prepr. ACS Div. Petrol. Chem. 34(1), 36–42 (1989)Google Scholar
  75. 75.
    A.K. Burnham, Application of the Šesták-Berggren equation to organic and inorganic materials of practical interest. J. Therm. Anal. Cal. 60, 895–908 (2000)CrossRefGoogle Scholar
  76. 76.
    U.C. Klomp, P.A. Wright, A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks. Org. Geochem. 16, 49–60 (1990)CrossRefGoogle Scholar
  77. 77.
    P. Tiwari, M. Deo, Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J. 58, 505–515 (2012)CrossRefGoogle Scholar
  78. 78.
    J.L. Hillier, T.H. Fletcher, Pyrolysis kinetics of a Green River oil shale using pressurized TGA. Energy Fuels 25, 232–239 (2011)CrossRefGoogle Scholar
  79. 79.
    A.K. Burnham, A. Levchenko, M.M. Herron, Analysis, occurrence, and reactions of dawsonite in AMSO well CH-1. Fuel 144, 259–263 (2015)CrossRefGoogle Scholar
  80. 80.
    E.W. Tegelaar, R.A. Noble, Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org. Geochem. 22, 543–574 (1994)CrossRefGoogle Scholar
  81. 81.
    H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)CrossRefGoogle Scholar
  82. 82.
    H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a Phenolic Plastic. J. Polym. Sci., Part C, (6), 183–195 (1964)Google Scholar
  83. 83.
    K.E. Peters, A.E. Cunningham, C.C. Walters, J. Jiang, Z. Fan, Petroleum systems in the Jianling-Dangyang area, Jianghan Basin, China. Org. Geochem. 24, 1035–1060 (1996)CrossRefGoogle Scholar
  84. 84.
    I. Johannes, K. Kruusement, R. Veski, Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrol. 79, 183–190 (2007)CrossRefGoogle Scholar
  85. 85.
    H. Petersen, P. Rosenberg, H. Nytoft, Oxygen groups in coal and alginate-rich kerogen revisited. Intl. J. Coal. Geol. 74, 93–113 (2008)CrossRefGoogle Scholar
  86. 86.
    M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Drueleers, J. Janssens, H.O. Desseyn, C.-R. Li, T.B. Tang, B. Roduit, J. Malek, T. Mitsuhashi, Computational aspects of kinetic analysis. Part A: the ICTAC Kinetics Project—data, methods and results. Thermochim. Acta 355, 125–143 (2000)CrossRefGoogle Scholar
  87. 87.
    S.A.I. Strobl, R.F. Sachsenhofer, A. Bechtel, R. Gratzer, D. Gross, S.H.H. Bikhari, R. Liu, Z. Liu, Q. Meng, P. Sun, Depositional environment of oil shale within the Eocene Jijuntun Formation in the Fushun Basin (NE China). Mar. Petrol. Geol. 56, 166–183 (2014)CrossRefGoogle Scholar
  88. 88.
    S.A.I. Strobl, R.F. Sachsenhofer, A. Bechtel, Q. Meng, P. Sun, Deposition of coal and oil shale in NE China: the Eocene Huadian Basin compared to the coeval Fushun Basin. Mar. Petrol. Geol. 64, 347–362 (2015)CrossRefGoogle Scholar
  89. 89.
    J.Q. Wang, J.L. Qian, L.Y. Wu, Kinetic study on hydrocarbon forming pyrolysis of Fushun and Maoming oil shales. Prepr. ACS Div. Petrol. Chem. 29(1), 143–147 (1984)Google Scholar
  90. 90.
    S. Li, C. Yue, Study of different kinetic models for oil shale pyrolysis. Fuel Proc. Technol. 85, 51–61 (2003)CrossRefGoogle Scholar
  91. 91.
    L. Pan, F. Dai, G. Li, S. Liu, A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy 86, 749–757 (2015)CrossRefGoogle Scholar
  92. 92.
    F. Bai, Y. Sun, Y. Liu, Q. Li, M. Guo, Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Conv. Management 97, 374–381 (2015)CrossRefGoogle Scholar
  93. 93.
    H. Han, N.-N. Zhong, C.-X. Huang, W. Zhang, Pyrolysis kinetics of oil shale from northeast China: implications from thermogravimetric and Rock-Eval experiments. Fuel 159, 776–783 (2015)CrossRefGoogle Scholar
  94. 94.
    Q. Wang, H. Liu, B. Sun, Study on pyrolysis characteristics of Huadian oil shale with isoconversional method. Oil Shale 26, 148–162 (2009)CrossRefGoogle Scholar
  95. 95.
    J. Qian, L. Yin (eds.), Oil Shale: Petroleum Alternative (China Petrochemical Press, Beijing, 2010)Google Scholar
  96. 96.
    R.G. Schaefer, H.J. Schenk, H. Hardelauf, R. Harms, Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments. Org. Geochem. 16, 115–120 (1990)CrossRefGoogle Scholar
  97. 97.
    M.D. Lewan, T.E. Ruble, Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem. 33, 1457–1475 (2002)CrossRefGoogle Scholar
  98. 98.
    D.M. Jarvie, Factors affecting Rock-Eval derived kinetic parameters. Chem. Geol. 93, 79–99 (1991)CrossRefGoogle Scholar
  99. 99.
    V. Dieckmann, Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Mar. Petrol. Geol. 22, 375–390 (2005)CrossRefGoogle Scholar
  100. 100.
    V. Dieckmann, R. Ondrak, B. Cramer, B. Horsfield, Deep basin gas: new insights from kinetic modelling and isotopic fractionation in deep-formed gas precursors. Mar. Petrol. Geol. 23, 183–199 (2006)CrossRefGoogle Scholar
  101. 101.
    P. Sundararaman, P.H. Merz, R.G. Mann, Determination of kerogen activation energy distribution. Energy Fuels 6, 793–803 (1992)CrossRefGoogle Scholar
  102. 102.
    D.M. Jarvie, L.L. Lundell, Kerogen type and thermal transformation of organic matter in the Miocene Monterey Formation, in The Monterey Formation: From Rocks to Molecules, C. M. Isaacs, J. Rullkötter, eds., (Columbia University Press, 2001), pp. 268–295Google Scholar
  103. 103.
    R. di Primio, B. Horsfield, M.A. Guzman-Vega, Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature 406, 173–175 (2000)CrossRefGoogle Scholar
  104. 104.
    M.D. Lewan, M.J. Kotarba, J.B. Curtis, D. Wieclaw, P. Dosakowski, ‘Oil-generation kinetics for organic facies with Type-II and –IIS kerogen in the Menilite shales of the Polish Carpathians. Geochim. Cosmochim. Acta 70, 3351–3368 (2006)CrossRefGoogle Scholar
  105. 105.
    K.E. Peters, F.D. Hostettler, T.D. Lorenson, R.J. Rosenbauer, Families of Miocene Monterey crude oil, seep, and tarball samples, coastal California. AAPG. Bulletin 92, 1131–1152 (2008)CrossRefGoogle Scholar
  106. 106.
    J. Espitalié, K.S. Makadi, J. Trichet, Role of the mineral matrix during kerogen pyrolysis. Org. Geochem. 6, 365–382 (1984)CrossRefGoogle Scholar
  107. 107.
    R.W. Taylor, K. Curry, M.S. Oh, T. Coburn, Clay-Induced Oil Loss and Alkene Isomerization During Oil Shale Retorting, LLNL Report UCID-21124 (1987), 34 ppGoogle Scholar
  108. 108.
    R. Pelet, Comments on the paper ‘The effects of the mineral matrix on the determination of kinetic parameters using modified Rock-Eval pyrolysis’ by H. Dembicki Jr, Org. Geochem. 18, 531–539 (1992), Org. Geochem. 21, 97–981 (1994)Google Scholar
  109. 109.
    A.K. Burnham, Comments on the paper ‘The effects of the mineral matrix on the determination of kinetic parameters using modified Rock-Eval pyrolysis’ by H. Dembicki Jr and the resulting comment by R. Pelet. Org. Geochem. 21, 979–981 (1994)CrossRefGoogle Scholar
  110. 110.
    H. Dembicki Jr., Mineral matrix effects on kinetic parameter determinations. Org. Geochem. 18, 531–539 (1992)CrossRefGoogle Scholar
  111. 111.
    J.G. Reynolds, A.K. Burnham, Comparison of source rocks and kerogen concentrates. Org. Geochem. 23, 11–19 (1995)CrossRefGoogle Scholar
  112. 112.
    J.G. Reynolds, A.M. Murray, A.K. Burnham, R.L. Braun, Pyromat II micropyrolysis: further applications, in Petroleum Geochemistry Industrial Sponsor’s Briefing (1991)Google Scholar
  113. 113.
    J.G. Reynolds, K.J. King, Effects of minerals on the pyrolysis of Kern River 650°F residuum, in Proceedings of 6th Unitar International Conference on Heavy Crude and Tar Sands, Houston, TX (1995), pp. 281–291Google Scholar
  114. 114.
    E. Lehne, V. Dieckmann, The significance of kinetic parameters and structural markers in source rock asphaltenes, reservoir asphaltenes and related source rock kerogens, the Duvernay Formation (WCSB). Fuel 86, 887–901 (2007)CrossRefGoogle Scholar
  115. 115.
    E. Lehne, Variations in bulk kinetic parameters of sulfur-rich asphaltenes isolated with different n-alkane solvents from heavy crude oils. Energy Fuels 22, 2429–2436 (2008)CrossRefGoogle Scholar
  116. 116.
    A. Geng, Z. Liao, Kinetic studies of asphaltene pyrolysis and their geochemical applications. Appl. Geochem. 17, 1529–1541 (2002)CrossRefGoogle Scholar
  117. 117.
    A.K. Burnham, M.S. Oh, R.W. Crawford, A.M. Samoun, Pyrolysis of Argonne premium coals: activation energy distributions and related chemistry. Energy Fuels 3, 42–55 (1989)CrossRefGoogle Scholar
  118. 118.
    J.G. Reynolds, A.K. Burnham, Pyrolysis and maturation of coals from the San Juan Basin. Energy Fuels 7, 610–619 (1993)CrossRefGoogle Scholar
  119. 119.
    D.B. Anthony, J.B. Howard, H.C. Hottel, Rapid devolatilization of pulverized coal, Fifteenth Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, 1975), pp. 1303–1317Google Scholar
  120. 120.
    P.R. Solomon, M.A. Serio, R.M. Carangelo, J.R. Markham, Fuel 65, 182–194 (1986)CrossRefGoogle Scholar
  121. 121.
    M.A. Serio, W.A. Peters, J.B. Howard, Ind. Eng. Chem. Res. 26, 1831–1838 (1987)CrossRefGoogle Scholar
  122. 122.
    P.R. Solomon, D.G.G. Hamblin, R.M. Carangelo, M.A. Serio, G.V. Deshpande, General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)CrossRefGoogle Scholar
  123. 123.
    P.R. Solomon, D.G. Hamblen, M.A. Serio, Z.-Z. Yu, S. Charpenay, A characterization method and model for predicting coal conversion behavior. Fuel 72, 469–488 (1993)CrossRefGoogle Scholar
  124. 124.
    J.R. Gibbins, R. Kandiyoti, The effect of variations in time-temperature history on product distribution from coal pyrolysis. Fuel 68, 895–903 (1989)CrossRefGoogle Scholar
  125. 125.
    A.K. Burnham, B.J. Schmidt, R.L. Braun, A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Org. Geochem. 23, 931–939 (1995)CrossRefGoogle Scholar
  126. 126.
    F. Behar, F. Lorant, M. Lewan, Role of NSO compounds during primary cracking of a Type II kerogen and Type III lignite. Org. Geochem. 39, 1–22 (2008)CrossRefGoogle Scholar
  127. 127.
    D. Mani, D.J. Patil, A.M. Dayal, B.N. Prasad, Thermal maturity, source rock potential and kinetics of hydrocarbon generation in Permian shales from the Damodar Valley Basin, Eastern India. Mar. Petrol. Geol. 66, 1056–1072 (2015)CrossRefGoogle Scholar
  128. 128.
    A.S. Pepper, P.J. Corvi, Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen, Mar. Petrol. Geol. 12, 291–319 (1995)Google Scholar
  129. 129.
    J.H. Campbell, Pyrolysis of subbituminous coal in relation to in-situ coal gasification. Fuel 57, 217–224 (1978)CrossRefGoogle Scholar
  130. 130.
    J.H. Campbell, G.J. Koskinas, G. Gallegos, M. Gregg, Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel 59, 718–726 (1980)CrossRefGoogle Scholar
  131. 131.
    E.B. Huss, A.K. Burnham, Gas evolution during pyrolysis of various Colorado oil shales. Fuel 61, 1188–1196 (1982)CrossRefGoogle Scholar
  132. 132.
    A.R. Daley, K.E. Peters, Continuous detection of pyrolytic carbon monoxide: a rapid method for determining sedimentary organic facies. AAPG Bull. 66, 2672–2681 (1982)Google Scholar
  133. 133.
    T.T. Coburn, Eastern oil shale retorting: gas evolution during pyrolysis of northeastern Kentucky shales. Energy Sources 7, 121–150 (1983)CrossRefGoogle Scholar
  134. 134.
    A. Ekstrom, H.J. Hurst, C.H. Randall, Chemical and retorting properties of selected Australian oil shales, in Geochemistry and Chemistry of Oil Shales, ACS Symposium Series 230, F.P. Miknis, J.F. McKay, eds., (American Chemical Society, 1983), pp. 317–334Google Scholar
  135. 135.
    A. Ekstrom, C.J.R. Fookes, H.J. Loeh, C.H. Randall, C. Rovere, J. Ellis, P.T. Crisp, Chemical and pyrolysis characteristics of two types of oil shale from the Condor deposit in Queensland. Australia, Fuel 66, 1133–1138 (1987)CrossRefGoogle Scholar
  136. 136.
    J.G. Reynolds, R.W. Crawford, A.K. Burnham, Analysis of oil shale and petroleum source rock pyrolysis by triple quadrupole mass spectrometry: comparisons of gas evolution at the heating rate of 10 °C/min. Energy Fuels 5, 507–523 (1991)CrossRefGoogle Scholar
  137. 137.
    A.K. Burnham, A.M. Samoun, J.G. Reynolds, Characterization of petroleum source rocks by pyrolysis-mass spectrometry gas evolution profiles, LLNL Report UCRL-ID-111012 (1992), 31 ppGoogle Scholar
  138. 138.
    J. Espitalié, P. Ungerer, I. Irwin, F. Marquis, Primary cracking of kerogens. Experimenting and modelling C1, C2-C5, C5-C15, and C15 + classes of hydrocarbons formed. Org. Geochem. 13, 893–899 (1988)CrossRefGoogle Scholar
  139. 139.
    A.K. Burnham, J.H. Richardson, T.T. Coburn, Pyrolysis kinetics for western and eastern oil shale, in Proceedings of IECEC ’82 of the 17th Intersociety Energy Conversion Engineering Conference, 1982, paper 829155, pp. 912–917Google Scholar
  140. 140.
    A.K. Burnham, R.W. Taylor, Occurrence and reactions of oil shale sulfur, in Proceedings of 15th Oil Shale Symposium, Golden, CO, April 1982, pp. 299–319. http://www.costar-mines.org/oss_archive/files/15OSSP/Occurrence_and_Reactions_of_Oil_Shale_Sulfur.pdf. Accessed 7 Aug 2016
  141. 141.
    C.M. Wong, R.W. Crawford, A.K. Burnham, Determination of sulfur-containing gases from oil shale pyrolysis by triple quadrupole mass spectrometry. Anal. Chem. 56, 390–395 (1984)CrossRefGoogle Scholar
  142. 142.
    M.A. Oh, A.K. Burnham, R.W. Crawford, Evolution of sulfur gases during coal pyrolysis. Prep. ACS Div. Fuel Chem. 33(1), 274–282 (1988)Google Scholar
  143. 143.
    R.L. Braun, A.K. Burnham, J.G. Reynolds, Oil and gas evolution kinetics for oil shale and petroleum source rocks determined from pyrolysis-TQMS data at two heating rates. Energy Fuels 6, 468–474 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LivermoreUSA

Personalised recommendations