Structures of Coal, Kerogen, and Asphaltenes



Hypothetical molecular structures of humic coal, sapropelic kerogens, and asphaltenes are described, including how they change with maturity and how they have been refined over the past 75 years with advances in characterization methods. Due to their importance for modeling oil and gas expulsion , Hildebrand solubility theory and results are outlined. The relationship between aromaticity and coke yield is described. A link is made also between the fundamental mechanism of kerogen decomposition and the types of appropriate global chemical kinetic models.


Coal structure Kerogen structure Asphaltenes Solvent swelling Solubility parameters Aromaticity Pyrolysis 


  1. 1.
    W. Fuchs, A.G. Sandhoff, Theory of coal pyrolysis. Ind. Eng. Chem. 34, 567–571 (1942)CrossRefGoogle Scholar
  2. 2.
    D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 25, pp. 777–810Google Scholar
  3. 3.
    T. Green, J. Kovac, D. Brenner, J.W. Larsen, The macromolecular structure of coal,ed. by R.A. Meyers. Coal Structure (Academic Press, 1982), Chap. 6, pp. 199–282Google Scholar
  4. 4.
    J.P. Mathews, A.L. Chaffee, The molecular representations of coal—a review. Fuel 96, 1–14 (2012)CrossRefGoogle Scholar
  5. 5.
    J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models. Fuel Proc. Technol. 92, 718–728 (2011)CrossRefGoogle Scholar
  6. 6.
    C.L. Spiro, P.G. Kosky, Space-filling models for coal. 2. Extension to coals of various ranks. Fuel 61, 1080–1084 (1982)CrossRefGoogle Scholar
  7. 7.
    J.H. Shinn, From coal to single-stage and two-stage products: a reactive model of coal structure. Fuel 63, 1187–1196 (1984)CrossRefGoogle Scholar
  8. 8.
    T. Kabe, A. Ishihara, E.-W. Qian, I.P. Sutrisna, Y. Kabe, Coal and coal-related compounds, vol 150 (Structures, reactivity and catalytic reactions, Elsevier, 2004)Google Scholar
  9. 9.
    T. Aida, Solvent swelling dynamics as a probe of coal structure. J. Fuel Soc. Jpn. 70, 820–826 (1991)CrossRefGoogle Scholar
  10. 10.
    G.A. Carson, Computer simulation of the molecular structure of bituminous coal. Energy Fuels 6, 771–778 (1992)CrossRefGoogle Scholar
  11. 11.
    F. Castro-Marcano, V.V. Lobodin, R.P. Rodgers, A.M. McKenna, A.G. Marshall, J.P. Mathews, A molecular model for illinois no. 6 argonne premium coal moving toward capturing the continuum structure. Fuel 95, 35–49 (2012).Google Scholar
  12. 12.
    N.A. Peppas, L.M. Lucht, Macromolecular structure of coals. 1. The organic phase of bituminous coals as a macromolecular network. Chem. Eng. Commun. 30, 291–310 (1984)CrossRefGoogle Scholar
  13. 13.
    J.W. Larsen, T.K. Green, J. Kovac, The nature of the macromolecular network structure of bituminous coals. J. Org. Chem. 50, 4729–4735 (1985)CrossRefGoogle Scholar
  14. 14.
    E.M. Suuberg, D. Lee, J.W. Larsen, Temperature dependence of crosslinking processes in pyrolysing coals. Fuel 64, 1668–1671 (1985)CrossRefGoogle Scholar
  15. 15.
    D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 19, pp. 549–604Google Scholar
  16. 16.
    J.-L. Faulon, Calculating the number-averaged molecular weight (M0) of aromatic and hydroaromatic clusters in coal using rubber elasticity theory. Energy Fuels 8, 1020–1023 (1994)CrossRefGoogle Scholar
  17. 17.
    Y. Otake, E.M. Suuberg, Solvent swelling rates of low rank coals and implications regarding their structure. Fuel 77, 901–904 (1998)CrossRefGoogle Scholar
  18. 18.
    J.P. Mathews, C. Burgess-Clifford, P. Painter, Interactions of Illinois No. 6 bituminous coal with solvents: a review of solvent swelling and extraction literature. Energy Fuels 29, 1279–1294 (2015)CrossRefGoogle Scholar
  19. 19.
    A.F.M. Barton, CRC Handbook of Solubility Parameters and other Cohesive Parameters (CRC Press, 1983)Google Scholar
  20. 20.
    M. Vandenbroucke, C. Largeau, Kerogen origin, evolution and structure. Org. Geochem. 38, 719–833 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Behar, M. Vandenbroucke, Chemical modelling of kerogens. Org. Geochem. 11, 15–24 (1987)CrossRefGoogle Scholar
  22. 22.
    C.G. Scouten, M. Siskin, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst Jr., Detailed structural characterization of the organic material in Rundle Ramsay crossing oil shale. Prepr. ACS Div. Petrol. Chem. 34(1), 43–47 (1989)Google Scholar
  23. 23.
    M. Siskin, C.G. Scouten, K.D. Rose, T. Aczel, S.G. Colgrove, R.E. Pabst, Jr., in Detailed Structural Characterization of the Organic Material in Rundle Ramsay Crossing and Green River Oil Shales, ed. by C. Snape. Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 143–158Google Scholar
  24. 24.
    S.R. Kelemen, M. Siskin, Organic matter models of oil shale revisited. Prepr. ACS Div. Petrol. Chem. 49(1), 73–76 (2004)Google Scholar
  25. 25.
    H. Freund, C.C. Walters, S.R. Kelemen, M. Siskin, M.L. Gorbaty, D.J. Curry, A.E. Bence, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part I—concepts and implementation. Org. Geochem. 38, 288–305 (2007)CrossRefGoogle Scholar
  26. 26.
    A.M. Orendt, I.S.O. Pimienta, S.R. Badu, M.S. Solum, R.J. Pugmire, D.R. Locke, K.W. Chapman, P.J. Chupas, R.E. Winans, Three-dimensional structure of the Siskin Green River oil shale kerogen model: a comparison between calculated and observed properties. Energy Fuels 27, 702–710 (2013)CrossRefGoogle Scholar
  27. 27.
    P.L. Robin, P.G. Rouxhet, Characterization of kerogens and study of their evolution by infrared spectroscopy: carbonyl and carboxyl groups. Geochim. Cosmochim. Acta 42, 1341–1349 (1978)CrossRefGoogle Scholar
  28. 28.
    A.K. Burnham, J.E. Clarkson, M.F. Singleton, C.M. Wong, R.W. Crawford, Biological markers from Green River kerogen decomposition. Geochim. Cosmochim. Acta 46, 1243–1251 (1982)CrossRefGoogle Scholar
  29. 29.
    A.K. Burnham, On the validity of the pristine formation index. Geochim. Cosmochim. Acta 53, 1693–1697 (1989)CrossRefGoogle Scholar
  30. 30.
    S.R. Kelemen, M. Afeworki, M.L. Gorbaty, M. Sansone, P.J. Kwiatek, C.C. Walters, H. Freund, M. Siskin, A.E. Bence, D.G. Curry, M. Solum, R.J. Pugmire, M. Vandenbroucke, M. Leblond, F. Behar, Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels 21, 1548–1561 (2007)CrossRefGoogle Scholar
  31. 31.
    U. Lille, I. Heinmaa, T. Pehk, Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel 82, 799–804 (2003)CrossRefGoogle Scholar
  32. 32.
    X.-H. Guan, Y. Liu, D. Wang, Q. Wang, M.-S. Chi, S. Liu, C.-G. Liu, Three-dimensional structure of Huadian oil shale kerogen model: an experimental and theoretical study. Energy Fuels 29, 4122–4136 (2015)CrossRefGoogle Scholar
  33. 33.
    J.W. Larsen, S. Li, Solvent swelling studies of Green River kerogen. Energy Fuels 8, 932–936 (1994)CrossRefGoogle Scholar
  34. 34.
    J.W. Larsen, S. Li, An initial comparison of the interactions of Type I and Type III kerogens with organic liquids. Org. Geochem. 26, 305–309 (1997)CrossRefGoogle Scholar
  35. 35.
    J.W. Larsen, H.M. Parikh, R. Michels, Changes in the cross-link density of Paris Basin Toarcian kerogen during maturation. Org. Geochem. 33, 1143–1152 (2002)CrossRefGoogle Scholar
  36. 36.
    N. Savest, V. Oja, T. Kaevand, U. Lille, Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel 86, 17–21 (2007)CrossRefGoogle Scholar
  37. 37.
    L. Ballice, Solvent swelling studies of Göynük (kerogen Type-I) and Beypazari oil shales (kerogen Type-II). Fuel 82, 1317–1321 (2003)CrossRefGoogle Scholar
  38. 38.
    S.R. Kelemen, C.C. Walters, D. Ertas, L.M. Kwiatek, Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory, Energy Fuels 20, 301–308 (2006)Google Scholar
  39. 39.
    L. Ballice, J.W. Larsen, Changes in the cross-link density of Göynük oil shale (Turkey) on pyrolysis. Fuel 82, 1305–1310 (2003)CrossRefGoogle Scholar
  40. 40.
    K.H. Altgelt, M.M. Boduszynski, Composition and Analysis of Heavy Petroleum Fractions (Marcel Dekker, 1994)Google Scholar
  41. 41.
    J.G. Speight, The Chemistry and Technology of Petroleum, 3rd edn. (Marcel Dekker, 1999), pp. 412–467Google Scholar
  42. 42.
    F. Behar, R. Pelet, J. Rouchache, Geochemistry of asphaltenes. Org. Geochem. 6, 587–595 (1984)CrossRefGoogle Scholar
  43. 43.
    R. di Primio, B. Horsfield, M.A. Guzman-Vega, Determining the temperature of petroleum formation from the kinetic properties of petroleum asphaltenes. Nature 406, 173–176 (2000)CrossRefGoogle Scholar
  44. 44.
    V. Dieckmann, P.G. Caccialanze, R. Galimberti, Evaluating the timing of oil expulsion: about the inverse behavior of light hydrocarbons and oil asphaltene kinetics. Org. Geochem. 33, 1501–1513 (2002)CrossRefGoogle Scholar
  45. 45.
    M. Keym, V. Dieckmann, Predicting the timing and characteristics of petroleum formation using tar mats and petroleum asphaltenes: a case study from the northern North Sea. J. Petrol. Geol. 29, 273–296 (2006)CrossRefGoogle Scholar
  46. 46.
    E. Lehne, Variations in bulk kinetic parameters of sulfur-rich asphaltenes isolated with different n-alkane solvents from heavy crude oils. Energy Fuels 22, 2429–2436 (2008)CrossRefGoogle Scholar
  47. 47.
    E. Lehne, V. Dieckmann, The significance of kinetic parameters and structural markers in source rock asphaltenes, reservoir asphaltenes and related source rock kerogens, the Duvernay Formation (WCSB). Fuel 86, 887–901 (2007)CrossRefGoogle Scholar
  48. 48.
    B. Horsfield, in The Bulk Composition of First-Formed Petroleum in Source Rocks, ed. by D.H. Welte, B.Horsfield, D.R. Baker. Petroleum and Basin Evolution: insights from Petroleum Geochemistry, Geology, and Basin Modeling (Springer, 1997), pp. 335–402Google Scholar
  49. 49.
    O.C. Mullins, H. Sabbah, J. Eyssautier, A.E. Pomerantz, L. Barré, A.B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T. Cooper, J. Orbulescu, R.M. Leblanc, J. Edwards, R.N. Zare, Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26, 3986–4003 (2012)CrossRefGoogle Scholar
  50. 50.
    A.E. Pomerantz, M.R. Hammon, A.L. Morrow, O.C. Mullins, R.N. Zare, Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130, 7216–7217 (2008)CrossRefGoogle Scholar
  51. 51.
    K. Qian, K.E. Edwards, A.S. Mennito, H. Freund, R.B. Saeger, K.J. Hickey, M.A. Francisco, C. Yung, B. Chawla, C. Wu, J.D. Kushnerick, W.N. Olmstead, Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 84, 4544–4551 (2012)CrossRefGoogle Scholar
  52. 52.
    H. Groenzin, O.C. Mullins, in Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization, ed. by O.C. Mullins, E.Y. Shue, A. Mammami, A.G. Marshall, Asphaltenes, Heavy Oils, and Petroleomics, Chap. 2 (Springer, 2007), pp. 17–62Google Scholar
  53. 53.
    D.C. Podgorski, Y.E. Corilo, L. Nyadong, V.V. Lobodin, B.J. Bythell, W.K. Robbins, A.M. McKenna, A.G. Marshall, R.P. Rodgers, Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revisited. Energy Fuels 27, 1268–1276Google Scholar
  54. 54.
    H. Sabbah, A.L. Morrow, A.E. Pomerantz, R.N. Zare, Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25, 1597–1604 (2011)CrossRefGoogle Scholar
  55. 55.
    B. Schuler, G. Meyer, D. Peña, O.C. Mullins, L. Gross, Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Amer. Chem. Soc. 137, 9870–9876 (2015)CrossRefGoogle Scholar
  56. 56.
    A.K. Burnham, J.A. Happe, On the mechanism of kerogen pyrolysis. Fuel 63, 1353–1356 (1984)CrossRefGoogle Scholar
  57. 57.
    M.R. Gray, Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy Fuels 17, 1566–1569 (2003)CrossRefGoogle Scholar
  58. 58.
    J.G. Stainforth, Practical kinetic modeling of petroleum generation and expulsion. Mar. Petrol. Geol. 26, 552–572 (2009)CrossRefGoogle Scholar
  59. 59.
    A.S. Pepper, in Estimating The Petroleum Expulsion Behavior of Source Rocks: a Novel Quantitative Approach, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 9–31Google Scholar
  60. 60.
    P. Ungerer, State of the art of research in kinetic modelling of oil formation and expulsion. Org. Geochem. 16, 1–25 (1990)CrossRefGoogle Scholar
  61. 61.
    S.J. Düppenbecker, L. Dohmen, D.H. Welte, in Numerical modeling of petroleum expulsion in two areas of the Lower Saxony Basin, Northern Germany, ed. by W.A. England, A.J. Fleet. Primary Migration, Special Publication No. 59 (The Geological Society London, 1991), pp. 47–64Google Scholar
  62. 62.
    R.L. Braun, A.K. Burnham, PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Org. Geochem. 19, 161–172 (1992)CrossRefGoogle Scholar
  63. 63.
    S.R. Kelemen, C.C. Walters, D. Ertas, H. Freund, D.J. Curry, Petroleum expulsion part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen, Energy Fuels 20, 309–319 (2006)Google Scholar
  64. 64.
    T.V. Le Doan, N.W. Bostrom, A.K. Burnham, R.L. Kleinberg, A.E. Pomerantz, P. Allix, Green River oil shale pyrolysis: semi-open conditions. Energy Fuels 27, 6447–6459 (2013)CrossRefGoogle Scholar
  65. 65.
    J.J. Sweeney, A.K. Burnham, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990)Google Scholar
  66. 66.
    Y. Feng, T.V. Le Doan, A.E. Pomerantz, The chemical composition of bitumen in pyrolyzed Green River oil shale: characterization by 13C NMR spectroscopy. Energy Fuels 27, 7314–7323 (2013)CrossRefGoogle Scholar
  67. 67.
    A.E. Pomerantz, T.V. Le Doan, P.R. Craddock, K.D. Bake, R.L. Kleinberg, A.K. Burnham, Q. Wu, R.N. Zare, G. Brodnik, W.C.-H. Lo, M.B. Grayson, S. Mitra-Kirtley, T.D. Bolin, T. Wu., Impact of laboratory-induced thermal maturity on asphaltene molecular structure. Energy Fuels (2016). doi: 10.1021/acs.energyfuels.6b01238 Google Scholar
  68. 68.
    R. Pelet, F. Behar, J.C. Monin, Resins and asphaltenes in the generation and migration of petroleum. Org. Geochem. 10, 481–498 (1986)CrossRefGoogle Scholar
  69. 69.
    L. Carbognani, E. Rogel, Solvent swelling of petroleum asphaltenes. Energy Fuels 16, 1348–1358 (2002)CrossRefGoogle Scholar
  70. 70.
    P. Painter, B. Veytsman, J. Youtcheff, Asphaltene aggregation and solubility. Energy Fuels 29, 2120–2133 (2015)CrossRefGoogle Scholar
  71. 71.
    D.D. Li, M.L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115, 347–356 (2014)CrossRefGoogle Scholar
  72. 72.
    K.E. Peters, C.C. Walters, J.M. Moldowan, The Biomarker Guide (Cambridge University Press, 2005)Google Scholar
  73. 73.
    D.W. van Krevelen, Coal—Topology (Chemistry, Physics, Constitution, Elsevier, 1993), Chap. 23, pp. 699–704; Chap. 10, pp. 300–331Google Scholar
  74. 74.
    H.L.C. Meuzelaar, J. Havercamp, F.D. Hileman, Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials (Elsevier, Compendium and Atlas, 1982)Google Scholar
  75. 75.
    S.R. Larter, A.G. Douglas, A pyrolysis-gas chromatographic method for kerogen typing. Mar. Petrol. Geol. 5, 194–204 (1978)CrossRefGoogle Scholar
  76. 76.
    K. Øygard, S. Larter, J. Senftle, The control of maturity and kerogen type on quantitative analytical pyrolysis data. Org. Geochem. 13, 1153–1162 (1988)CrossRefGoogle Scholar
  77. 77.
    J.T. Senftle, S.R. Larter, B.W. Bromley, J.H. Brown, Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products. Org. Geochem. 9, 345–350 (1986)CrossRefGoogle Scholar
  78. 78.
    S. Larter, Chemical models of vitrinite reflectance evolution. Geol. Rund. 78, 349–359 (1989)CrossRefGoogle Scholar
  79. 79.
    B. Horsfield, Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim. Cosmochim. Acta 53, 891–901 (1989)CrossRefGoogle Scholar
  80. 80.
    D.L. VanderHart, J.L. Retcovsky, Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals. Fuel 55, 202–204 (1976)CrossRefGoogle Scholar
  81. 81.
    F.P. Miknis, J.W. Smith, An NMR survey of United States oil shales. Org. Geochem. 5, 193–201 (1984)CrossRefGoogle Scholar
  82. 82.
    F.P. Miknis, P.J. Conn, A common relation for correlating pyrolysis yields of coals and oil shales. Fuel 65, 248–250 (1986)CrossRefGoogle Scholar
  83. 83.
    F.P. Miknis, in Conversion characteristics of selected foreign and domestic oil shales, Proceedings of 23rd Oil Shale Symposium, Golden, CO, Oct 1990.
  84. 84.
    F.P. Miknis, in Solid-State 13 C Nmr in Oil Shale Research: an Introduction With Selected Applications, Composition, ed. by C. Snape. Geochemistry and Conversion of Oil Shales, NATO ASI Series vol 455 (Kluwer, 1995), pp. 69–91Google Scholar
  85. 85.
    F.P. Miknis, A.W. Lindner, A.J. Gannon, M.F. Davis, G.E. Maciel, Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem. 7, 239–248 (1984)CrossRefGoogle Scholar
  86. 86.
    M.S. Solum, R.J. Pugmire, D.M. Grant, 13C solid-state NMR of Argonne Premium Coals. Energy Fuels 3, 187–193 (1989)CrossRefGoogle Scholar
  87. 87.
    F.P. Miknis, D.A. Netzel, S.D. Brandes, R.A. Winschel, F.P. Burke, N.m.r. determination of aromatic carbon balances and hydrogen utilization in direct coal liquefaction. Fuel 72, 217–224 (1993)CrossRefGoogle Scholar
  88. 88.
    M.M. Maroto-Valer, J.M. Andresen, C.E. Snape, Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77, 783–785 (1998)CrossRefGoogle Scholar
  89. 89.
    A.B. Andrews, J.C. Edwards, A.E. Pomerantz, O.C. Mullins, D. Nordlund, K. Norinaga, Comparison of coal-derived and petroleum asphaltenes by 13C nuclear magnetic resonance. DEPT and XRS Energy Fuels 25, 3068–3076 (2011)CrossRefGoogle Scholar
  90. 90.
    A.O. Odeh, Comparative study of the aromaticity of the coal structure during the char formation process under both conventional and advanced analytical techniques. Energy Fuels 29, 2676–2684 (2015)CrossRefGoogle Scholar
  91. 91.
    A.K. Burnham, R.L. Braun, R.W. Taylor, T.T. Coburn, Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: implications for kerogen structure. Prepr. ACS Div. Petrol. Chem. 34(1), 36–42 (1989)Google Scholar
  92. 92.
    P.R. Solomon, D.G. Hamblen, Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)CrossRefGoogle Scholar
  93. 93.
    P.R. Solomon, D.G. Hamblen, R.M. Carangelo, M.A. Serio, General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)CrossRefGoogle Scholar
  94. 94.
    S.A. Niksa, A.R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)CrossRefGoogle Scholar
  95. 95.
    T.H. Fletcher, A.R. Kerstein, R.J. Pugmire, M.S. Solum, D.M. Grant, Chemical percolation model for devolatilization. 3. Direct use of 13C NMR data to predict effects of coal type. Energy Fuels 6, 414–431 (1992)CrossRefGoogle Scholar
  96. 96.
    P.R. Solomon, T.H. Fletcher, R.J. Pugmire, Progress in coal pyrolysis. Fuel 72, 587–597 (1993)CrossRefGoogle Scholar
  97. 97.
    T.H. Fletcher, D. Barfuss, R.J. Pugmire, Modeling light gas and tar yields from pyrolysis of Green River oil shale demineralized kerogen using the chemical percolation devolatilization model. Energy Fuels 29, 4921–4926 (2015)CrossRefGoogle Scholar
  98. 98.
    C.C. Walters, H. Freund, S.R. Kelemen, P. Peczak, D.J. Curry, Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 2—Application under laboratory and geologic conditions. Org. Geochem. 38, 306–322 (2007)CrossRefGoogle Scholar
  99. 99.
    K.J. Jackson, A.K. Burnham, R.L. Braun, K.G. Knauss, Temperature and pressure dependence of n-hexadecane cracking. Org. Geochem. 23, 941–953 (1995)CrossRefGoogle Scholar
  100. 100.
    E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures. Org. Geochem. 40, 1195–1209 (2009)CrossRefGoogle Scholar
  101. 101.
    E. Salmon, A.C.T. van Duin, F. Lorant, P.-M Marquaire, W.A. Goddard III, Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2. Molecular dynamics simulations using the ReaxFF reactive force field. Org. Geochem. 40, 416–427 (2009)CrossRefGoogle Scholar
  102. 102.
    X. Liu, J.-H. Zhan, D. Lai, X. Liu, Z. Zhang, Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energy Fuels 29, 2987–2997 (2015)CrossRefGoogle Scholar
  103. 103.
    D.L. Allara, R. Shaw, A compilation of kinetic parameters for the thermal degradation of n-alkane molecules. J. Phys. Chem. Ref. Data 9, 523–559 (1980)CrossRefGoogle Scholar
  104. 104.
    S.J. Blanksby, G.B. Ellison, Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LivermoreUSA

Personalised recommendations