Advertisement

Introduction to Chemical Kinetics

Chapter

Abstract

After introducing the basis of the Arrhenius equation and its relationship to transition-state theory , forms of global chemical kinetic models are summarized, including shrinking core and pseudo nth-order reactions; sigmoidal reactions such as sequential, random scission, autocatalytic , logistic, and nucleation-growth model; and distributed reactivity models, including continuous and discrete activation energy distribution models. Isoconversional and model fitting methods for deriving chemical kinetic models are described, including how to use simple kinetic analyses to derive initial guesses for nonlinear regression of complex models. Common errors that lead to erroneous Arrhenius parameters are outlined.

Keywords

Isoconversional Model fitting Prout-tompkins model Sigmoidal reactions Autocatalytic reactions Random scission reactions Distributed reactivity model DAEM 

References

  1. 1.
    Originally Published by S. Arrhenius in Z. Phys. Chem. 4, p. 226, It is covered in any undergraduate physical chemistry text (1889)Google Scholar
  2. 2.
    Boltzmann Distribution (2016), https://en.wikipedia.org/wiki/Boltzmann_distribution. Accessed 7 Aug 2016
  3. 3.
    Maxwell-Boltzmann Distribution (2016), https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution. Accessed 7 Aug 2016
  4. 4.
    A.K. Burnham, R.L. Braun, Global kinetic analysis of complex materials. Energy Fuels 13, 1–22 (1999)CrossRefGoogle Scholar
  5. 5.
    Transition-state theory was first published by, H. Eyring in 1935, and its history is covered in a special journal issue in his memory by K.J. Laidler, M.C. King, The development of transition-state theory. J. Phys. Chem. 87, 2657–2664 (1983)CrossRefGoogle Scholar
  6. 6.
    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1–19 (2011)CrossRefGoogle Scholar
  7. 7.
    J.R. Frade, M. Cable, Theoretical solutions for mixed control of solid state reactions. J. Mat. Sci. 32, 2727–2733 (1997)CrossRefGoogle Scholar
  8. 8.
    Z. Du, A.F. Sarofim, J.P. Longwell, C.A. Mims, Kinetic measurement and modeling of carbon oxidation. Energy Fuels 5, 214–221 (1991)CrossRefGoogle Scholar
  9. 9.
    K.J. Jackson, A.K. Burnham, R.L. Braun, K.G. Knauss, Temperature and pressure dependence of n-hexadecane cracking. Org. Geochem. 23, 941–953 (1995)CrossRefGoogle Scholar
  10. 10.
    A.K. Burnham, R.K. Weese, A.P. Wemhoff, J.L. Maienschein, A historical and current perspective on predicting thermal cookoff behavior. J. Therm. Anal. Cal. 89, 407–415 (2007)CrossRefGoogle Scholar
  11. 11.
    E.A. Glascoe, J.M. Zaug, A.K. Burnham, Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa. J. Phys. Chem. A 113, 13548–13555 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Freund, J.A. Couse, G.A. Otten, Effects of pressure on the kinetics of kerogen pyrolysis. Energy Fuels 7, 1088–1094 (1993)CrossRefGoogle Scholar
  13. 13.
    D.B. Anthony, J.B. Howard, Coal devolatilization and hydrogasification. AIChE J. 22, 625–656 (1976)CrossRefGoogle Scholar
  14. 14.
    E.A. Dorko, W. Bryant, T.L. Regulinski, Solid-state reaction kinetics. IV. Analysis of chemical reactions by means of the Weibull function. Anal. Calorim. 3, 505–509 (1974)Google Scholar
  15. 15.
    R. Aris, Reactions in continuous mixtures. AIChE J. 35, 539–548 (1989)CrossRefGoogle Scholar
  16. 16.
    J.H. Flynn, The temperature integral—its use and abuse. Thermochim. Acta 300, 83–92 (1997)CrossRefGoogle Scholar
  17. 17.
    K.H. Van Heek, H. Juntgen, W. Peters, Kinetics of nonisothermal reactions, using thermal decomposition reactions as an example. Ber. Bunsenges. Physik. Chem. 71, 113–121 (1967)Google Scholar
  18. 18.
    J.H. Campbell, G.J. Koskinas, N.D. Stout, Kinetics of oil generation from Colorado oil shale. Fuel 57, 372–376 (1978)CrossRefGoogle Scholar
  19. 19.
    A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964)CrossRefGoogle Scholar
  20. 20.
    C. Popescu, E. Segal, On the temperature integral in non-isothermal kinetics with linear heating rate. Thermochim. Acta 75, 253–257 (1984)CrossRefGoogle Scholar
  21. 21.
    G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. 11, 446 (1977)CrossRefGoogle Scholar
  22. 22.
    L.A. Perez-Maqueda, J.M. Criado, The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J. Thermal Analysis 60, 909–915 (2000)CrossRefGoogle Scholar
  23. 23.
    R.L. Braun, A.K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1, 153–161 (1987)CrossRefGoogle Scholar
  24. 24.
    W. Gautschi, W.F. Cahill, in Handbook of Mathematical Functions; ed. by M. Abramowitz, I.A. Stegun. (National Bureau of Standards, AMS 55, Washington, D. C, 1964), pp. 228–231Google Scholar
  25. 25.
    A.C. Hindmarsh, LSODE and LSODI two new. Initial value ordinary Differential Equation Solvers. ACM SIGNUM Newsl. 15(4), 10–11 (1980)CrossRefGoogle Scholar
  26. 26.
    S.V. Gulikeri, D. Luss, Analysis of activation energy of grouped parallel reactions. AIChE J. 18, 277–282 (1972)CrossRefGoogle Scholar
  27. 27.
    A.K. Burnham, L.N. Dinh, A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J. Therm. Anal. Cal. 89, 479–490 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes (Springer, 2015)Google Scholar
  29. 29.
    H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a Phenolic Plastic. J. Polym. Sci., Part C. 6, 183–195 (1964)Google Scholar
  30. 30.
    T. Ozawa, A new method for analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965)CrossRefGoogle Scholar
  31. 31.
    J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. Polymer Lett. 4, 323–328 (1966)CrossRefGoogle Scholar
  32. 32.
    J.H. Flynn, The isoconversional method for determination of energy of activation at constant heating rates: corrections for the Doyle approximation. J. Therm. Anal. 27, 95–102 (1983)CrossRefGoogle Scholar
  33. 33.
    J.H. Flynn, Early papers by Takeo Ozawa and their continuing relevance. Thermochim. Acta 282(283), 35–42 (1996)CrossRefGoogle Scholar
  34. 34.
    C.D. Doyle, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6, 639–642 (1962)CrossRefGoogle Scholar
  35. 35.
    T. Ozawa, Estimation of activation energy by isoconversional methods. Thermochim. Acta 203, 159–165 (1992)CrossRefGoogle Scholar
  36. 36.
    M.J. Starink, Activation energy determination for linear heating experiments: a comparison of the accuracy of isoconversional methods. Thermochim. Acta 404, 163–176 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Vyazovkin, Modification of the integral isoconversional procedure to account for variation in the activation energy. J. Comput. Chem. 22, 178–183 (2001)CrossRefGoogle Scholar
  38. 38.
    M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Drueleers, J. Janssens, H.O. Desseyn, C.-R. Li, T.B. Tang, B. Roduit, J. Malek, T. Mitsuhashi, Computational aspects of kinetic analysis. Part A: the ICTAC Kinetics Project—data, methods and results. Thermochim. Acta 355, 125–143 (2000)CrossRefGoogle Scholar
  39. 39.
    K. Miura, A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels 9, 302–307 (1995)CrossRefGoogle Scholar
  40. 40.
    K. Miura, T. Maki, A simple method for estimating f(E) and k0(E) in the distributed activation energy model. Energy Fuels 12, 864–869 (1998)CrossRefGoogle Scholar
  41. 41.
    V. Vand, A theory of the irreversible electric resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc. (London, 1943), pp. 222–246Google Scholar
  42. 42.
  43. 43.
  44. 44.
    H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)CrossRefGoogle Scholar
  45. 45.
    H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Nat. Bur. Stand. 57, 217–221 (1956)CrossRefGoogle Scholar
  46. 46.
    D. Chen, X. Gao, D. Dollimore, A generalized form of the Kissinger equation. Thermochim. Acta 215, 109–117 (1993)CrossRefGoogle Scholar
  47. 47.
    P.A. Redhead, Thermal desorption of gases. Vacuum 12, 203–211 (1962)CrossRefGoogle Scholar
  48. 48.
    V. Dieckmann, Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Mar. Petrol. Geol. 22, 375–390 (2005)CrossRefGoogle Scholar
  49. 49.
    Simple Linear Regression, http://en.wikipedia.org/wiki/Simple_linear_regression. Accessed 6 Mar 2014
  50. 50.
    A.K. Burnham, Obtaining reliable phenomenological chemical kinetic models for real-world applications. Thermochim. Acta 597, 35–40 (2014)CrossRefGoogle Scholar
  51. 51.
    A. Yelon, E. Sacher, W. Linert, Comment on the mathematical origins of the kinetic compensation effect parts 1 and 2 by P.J. Barrie, Phys. Chem. Chem. Phys. 14, 318 and 327 (2012). Phys. Chem. Chem. Phys. 14, 8232–8234 (2012)CrossRefGoogle Scholar
  52. 52.
    P.J. Barrie, Reply to comment on the mathematical origins of the kinetic compensation effect. parts 1 and 2 by A. Yelon, E. Sacher, W. Linert, Phys. Chem. Chem. Phys. 14, (2012). Phys. Chem. Chem. Phys. 14, 8235–8236 (2012)CrossRefGoogle Scholar
  53. 53.
    Non-linear Least Squares, http://en.wikipedia.org/wiki/Non-linear_least_squares. Accessed 7 Aug 2016
  54. 54.
    Levenberg-Marquardt Algorithm, http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm. Accessed 7 Aug 2016
  55. 55.
    C.C. Lakshmanan, M.L. Bennett, N. White, Implications of multiplicity in kinetic parameters to petroleum exploration: distributed activation energy models. Energy Fuels 5, 110–117 (1991)CrossRefGoogle Scholar
  56. 56.
    J. Hillier, T. Bezzant, T.H. Fletcher, Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data. Energy Fuels 24, 2841–2847 (2010)CrossRefGoogle Scholar
  57. 57.
  58. 58.
    D.A. Ratkowsky, Handbook of Nonlinear Regression Models (Marcel Dekker, 1990), pp. 36–48Google Scholar
  59. 59.
    A.K. Burnham, An nth-order Gaussian energy distribution model for sintering. Chem. Eng. J. 108, 47–50 (2005)CrossRefGoogle Scholar
  60. 60.
    B. Roduit, M. Hartmann, P. Folly, A. Sarbach, R. Baltensperger, Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim. Acta 579, 31–39 (2014)CrossRefGoogle Scholar
  61. 61.
    W.E. Brown, D. Dollimore, A.K. Galway, in Comprehensive Chemical Kinetics, ed. by C.H. Bamfor, C.F. Tipper. Reactions in the solid state, vol. 22 (Elsevier, 1980), pp 49–65Google Scholar
  62. 62.
    M. Avrami, Kinetics of phase change, I. General theory, J. Chem. Phys. 7, pp. 1103–1112 (1939); II. Transformation-time relation for random distribution of nuclei, J. Chem. Phys. 8, pp. 212–224 (1940); III. Granulation, phase change, and microstructure, J. Chem. Phys. 8, pp. 177–184Google Scholar
  63. 63.
    W. Johnson, R. Mehl, Reaction kinetics in processes of nucleation and growth. Trans. AIME 135, 416–442 (1939)Google Scholar
  64. 64.
    A. Kolmogorov, A statistical theory for the recrystallization of metals, Akad. Nauk. SSSR, Izv. Ser. Matem. 1, pp. 355–359 (1937)Google Scholar
  65. 65.
    B.V. Erofe’ev, A generalized equation of chemical kinetics and its application in reactions involving solids, C.R. Dokl. Akad. Sci. USSR 52, pp. 511–514 (1946)Google Scholar
  66. 66.
    E.G. Prout, F.C. Tompkins, The thermal decomposition of potassium permanganate. Trans. Faraday Soc. 40, 488–498 (1944)CrossRefGoogle Scholar
  67. 67.
    U. Retter, D. Vollhardt, Chain nucleation: a critical consideration of Prout and Tompkins’ Law. Langmuir 8, 1693–1694 (1992)CrossRefGoogle Scholar
  68. 68.
    J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3, 1–12 (1971)CrossRefGoogle Scholar
  69. 69.
    J.B. Austin, R.L. Rickett, Kinetics of the decomposition of austenite at constant temperature, AIME Technical publication. 964, p. 20 (1938). Trans. AIME 135, pp. 396–415Google Scholar
  70. 70.
    E.G. Prout, F.C. Tompkins, The thermal decomposition of silver permanganate. Trans. Far. Soc. 42, 468–472 (1946)CrossRefGoogle Scholar
  71. 71.
    B.V. Erofe’ev, in Reactivity of Solids, Proceedings of the 4th Intl. Symp., (Elsevier, Amsterdam, 1961) pp. 273–282Google Scholar
  72. 72.
    M.A. Arshad, A. Maaroufi, Relationship between Johnson-Mehl-Avrami and Šesták-Berggren models in the kinetics of crystallization in amorphous materials. J. Non-Crystalline Solids 413, 53–58 (2015)CrossRefGoogle Scholar
  73. 73.
    N.S. Akulov, Basics of Chemical Dynamics (in Russian) (Moscow State University, 1940)Google Scholar
  74. 74.
    M. Rios-Fachal, C. Garcia-Fernandez, J. Lopez-Beceiro, S. Gomez-Barreiro, J. Tarrio-Saavedra, A. Ponton, R. Ariaga, Effect of nanotubes on the thermal stability of polystyrene, J. Therm. Anal. Cal. 113, 481–487 (2013)Google Scholar
  75. 75.
    J. Tarrio-Saavedra, J. Lopez-Beceiro, S. Naya, M. Francisco-Fernandez, R. Artiaga, Simulation study for generalized logistic function in thermal data modeling. J. Therm. Anal. Cal. 118, 1253–1268 (2014)CrossRefGoogle Scholar
  76. 76.
    A.K. Burnham, Use and misuse of logistic equations for modeling chemical reactions, J. Therm. Anal. Cal. (2015)Google Scholar
  77. 77.
    Cheminform, St. Petersburg (CISP) Ltd, 197198, (14, Dobrolubov Ave, Saint Petersburg, Russia)Google Scholar
  78. 78.
    M.E. Brown, The Prout-tompkins rate equation in solid-state kinetics. Thermochim. Acta 300, 93–106 (1997)CrossRefGoogle Scholar
  79. 79.
    A.K. Burnham, R.L. Braun, T.T. Coburn, E.I. Sandvik, D.J. Curry, B.J. Schmidt, R.A. Noble, An appropriate kinetic model for well-preserved algal kerogens. Energy Fuels 10, 49–59 (1996)CrossRefGoogle Scholar
  80. 80.
    F.O. Rice, K.F. Herzfeld, The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions, J. Amer. Chem. Soc. 56, 284–289 (1934)Google Scholar
  81. 81.
    J.H. Flynn, R.E. Florin, in Pyrolysis and GC in polymer analysis, ed. by S.A. Liebman, E.J. Levy. Degradation and pyrolysis mechanisms, (Marcel Dekker, 1985) pp. 149–208Google Scholar
  82. 82.
    R.E. Lyon, M.T. Takemori, N. Safronava, S.I. Stoliarov, R.N. Walters, A molecular basis for polymer flammability. Polymer 50, 2608–2617 (2009)CrossRefGoogle Scholar
  83. 83.
    L.A. Wall, in Analytical Chemistry of Polymers, Part II, Chapter 5, ed. by G.M. Kline. Pyrolysis,(Academic Press, 1962) pp. 181–248Google Scholar
  84. 84.
    L.A. Wall, S. Straus, Pyrolysis of polyolefins. J. Polym. Sci. 44, 313–323 (1960)CrossRefGoogle Scholar
  85. 85.
    A.K. Burnham, R.L. Braun, Kinetics of Polymer Decomposition (Lawrence Livermore National Laboratory Rept. UCID-21293, 1987) p. 28Google Scholar
  86. 86.
    A.K. Burnham, R.L. Braun, R.W. Taylor, T.T. Coburn, Comparison of isothermal and nonisothermal pyrolysis data with various rate mechanisms: implications for kerogen structure. Prepr. ACS Div. Petrol. Chem. 34(1), 36–42 (1989)Google Scholar
  87. 87.
    A.K. Burnham, Application of the Šesták-Berggren equation to organic and inorganic materials of practical interest. J. Therm. Anal. Cal. 60, 895–908 (2000)CrossRefGoogle Scholar
  88. 88.
    A.K. Burnham, R.K. Weese, Kinetics of thermal degradation of explosive binders Viton A, Estane, Kel-F. Thermochim. Acta 426, 85–92 (2005)CrossRefGoogle Scholar
  89. 89.
    J.D. Nam, J.C. Seferis, Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions. J. Poly Sci. B Poly. Phys. 30, 455–463 (1992)CrossRefGoogle Scholar
  90. 90.
    J.G. Reynolds, A.K. Burnham, Pyrolysis decomposition kinetics of cellulose-based materials by constant heating rate micropyrolysis. Energy Fuels 11, 88–97 (1997)CrossRefGoogle Scholar
  91. 91.
    R. Capart. L. Khezami, A.K. Burnham, Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta. 417, 79–89 (2004)Google Scholar
  92. 92.
    D. Dollimore, B. Holt, Thermal degradation of cellulose in nitrogen. J. Poly. Sci. 11, 1703–1711 (1973)Google Scholar
  93. 93.
    M. Grønli, M.J. Antal Jr., G. Várhegyi, A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38, 2238–2244 (1999)CrossRefGoogle Scholar
  94. 94.
    A.K. Burnham, X. Zhou, L.J. Broadbelt, Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels 29, 2906–2918 (2015)CrossRefGoogle Scholar
  95. 95.
    S. Kim, Y. Eom, Estimation of kinetic triplet of cellulose pyrolysis reaction from isothermal kinetic results. Kor. J. Chem. Eng. 23, 409–414 (2006)CrossRefGoogle Scholar
  96. 96.
    H. Barud, C. Riberio, J. Capella, M.S. Crespi, S. Ribeiro, Y. Messadeq, Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J. Therm. Anal. Cal. 105, 421–426 (2011)CrossRefGoogle Scholar
  97. 97.
    P. Sanchez-Jimenez, L. Perez-Maqueda, A. Perejon, J.M. Criado, Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim. Acta 552, 54–59 (2013)CrossRefGoogle Scholar
  98. 98.
    F.H. Constable, The mechanism of catalytic decomposition. Proc. Royal. Soc. A 108, 355–378 (1925)CrossRefGoogle Scholar
  99. 99.
    G.J. Pitt, The kinetics of the evolution of volatile products from coal. Fuel 41, 267–274 (1962)Google Scholar
  100. 100.
    P. Hanbaba, Reaktionkinetische Untersuchungen sur Kohlenwasserstoffenbindung aus Steinkohlen bie niedregen Aufheizgeschwindigkeiten. Dissertation, University of Aachen, (1967)Google Scholar
  101. 101.
    P. Ungerer, R. Pelet, Extrapolation of the kinetics of oil and gas generation from laboratory experiments to sedimentary basins. Nature 327, 52–54 (1987)CrossRefGoogle Scholar
  102. 102.
    L. Kolar-Anić and S. Veljković, Weibull distribution and kinetics of heterogeneous processes. J. Chem. Phys. 63, pp. 663–668 (1975); Statistical foundations of heterogeneous kinetics, ibid., pp 669–673Google Scholar
  103. 103.
    T.C. Ho, R. Aris, On apparent second-order kinetics. AIChE J. 33, 1050–1051 (1987)CrossRefGoogle Scholar
  104. 104.
    J. Cai, R. Liu, Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J. Phys. Chem. B. 111, 10681–10686 (2007)CrossRefGoogle Scholar
  105. 105.
    E.M. Suuberg, Approximate solution technique for nonisothermal, gaussian distributed activation energy models. Combust. Flame 50, 243–245 (1983)CrossRefGoogle Scholar
  106. 106.
    A.K. Burnham, R.L. Braun, H.R. Gregg, A.M. Samoun, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy Fuels 1, 452–458 (1987)CrossRefGoogle Scholar
  107. 107.
    P. Sundararaman, P.H. Merz, R.G. Mann, Determination of kerogen activation energy distribution. Energy Fuels 6, 793–803 (1992)CrossRefGoogle Scholar
  108. 108.
    J. Cai, T. Li, R. Liu, A critical study of the Miura-Maki integral method for the estimation of the kinetic parameters of the distributed activation energy model. Bioresour. Technol 102, 3894–3899 (2011)CrossRefGoogle Scholar
  109. 109.
    S. Vyazovkin, K. Chrissafis, M.L. Di Lorenzo, N. Koga, M. Pijolet, B. Roduit, N. Sbirrazzuoli, J.J. Sunol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1–23 (2014)CrossRefGoogle Scholar
  110. 110.
    R.E. Lyon, N. Safronova, J. Senese, S. Stoliarov, Thermokinetic model of sample response in nonisothermal analysis. Thermochim. Acta 545, 82–89 (2012)CrossRefGoogle Scholar
  111. 111.
    K.E. Peters, A.K. Burnham, C.C. Walters, Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis. AAPG Bull. 99, 591–616 (2015)CrossRefGoogle Scholar
  112. 112.
    F.J. Gotor, J.M. Criado, J. Malak, N. Koga, Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J. Phys. Chem. A 104, 10777–10782 (2000)CrossRefGoogle Scholar
  113. 113.
    P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, A. Perejon, J.M. Criado, A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Poly. Degrad. Stab. 95, 733–739 (2010)CrossRefGoogle Scholar
  114. 114.
    R. Simha, L.A. Wall, Kinetics of chain depolymerization. J. Phys. Chem. 56, 707–715 (1952)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LivermoreUSA

Personalised recommendations