Skip to main content

Introduction to First-Principle Simulation of Molecular Systems

  • Chapter
  • First Online:
Computational Mathematics, Numerical Analysis and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 13))

  • 1281 Accesses

Abstract

First-principle molecular simulation aims at computing the physical and chemical properties of a molecule, or more generally of a material system, from the fundamental laws of quantum mechanics. It is widely used in various application fields ranging from quantum chemistry to materials science and molecular biology, and is the source of many very interesting and challenging mathematical and numerical problems. This chapter is an elementary introduction to this field, covering some modeling, mathematical, and numerical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Again by Riesz representation theorem.

  2. 2.

    Recall that a matrix \(A \in \mathbb{C}^{d\times d}\) is called Hermitian if A = A (i.e. \(\overline{A_{ij}} = A_{ji}\), \(\forall 1 \leq i,j \leq d\)). If \(z \in \mathbb{C}\) and \(A \in \mathbb{C}^{d\times d}\), we use the shorthand notation zA to denote the matrix zI d A, where I d is the rank-d identity matrix. We proceed similarly with linear operators on complex Hilbert spaces.

  3. 3.

    The operator A is called closed if its graph \(\varGamma (A):= \left \{(u,Au),\,u \in D(A)\right \}\) is a closed subspace of \(\mathscr{H} \times \mathscr{ H}\).

  4. 4.

    Since A is bounded below, there exists \(C \in \mathbb{R}\) s.t. (u, v) Q(A): = 〈u | Av〉 + C〈u | v〉 is a scalar product on D(A). The Cauchy closure of D(A) for the associated norm is a Hilbert space, independent of C, called the form domain of A. The quadratic form associated with A is the unique continuous extension of (u, v) ↦ 〈u | Av〉 to Q(A).

  5. 5.

    We limit ourselves to pure states in these lectures notes.

  6. 6.

    It may seem weird that steady states explicitly depend on time. This apparent paradox is due to the fact that a state is in fact an element of the projective space \((\mathscr{H}\setminus \left \{0\right \})/\mathbb{C}^{{\ast}}\), so that f(t)ψ and ψ actually represent the exact same state.

  7. 7.

    An operator A on \(L^{2}(\mathbb{R}^{d})\) such that ρ(A) ≠ ∅ is called locally compact if for any bounded set B, the operator χ B (zA)−1 is a compact operator on \(L^{2}(\mathbb{R}^{d})\) for some (and then all by virtue of the resolvent formula) zρ(A). Here, χ B is the characteristic function of B; in the expression χ B (zA)−1 , χ B should be understood as the multiplication operator by the bounded function χ B , which is a bounded self-adjoint operator on \(\mathscr{H}\). The Hamiltonian of the hydrogen atom is a locally compact self-adjoint operator on \(L^{2}(\mathbb{R}^{3})\), and for this operator, \(\mathit{\mbox{ dim}}(\mathscr{H}_{p}) = \mathit{\mbox{ dim}}(\mathscr{H}_{c}) = \infty\).

  8. 8.

    For simplicity, we omit the spin variables. See Remark 25 below for more details.

  9. 9.

    These are the most common isotopes of oxygen and hydrogen.

  10. 10.

    Eigenvalues are counted with their multiplicities, so that \(E_{0}^{\left \{\mathbf{R}_{k}\right \}} \leq E_{1}^{\left \{\mathbf{R}_{k}\right \}} \leq E_{2}^{\left \{\mathbf{R}_{k}\right \}}\cdots\), with a priori large inequalities.

  11. 11.

    Breakdowns of the adiabatic approximation are studied in [14, 22, 35].

  12. 12.

    The operator A has a compact resolvent if, for some zρ(A) (and therefore for all zρ(A) by virtue of the resolvent formula), zA, considered as a bounded operator on \(\mathscr{H}\), is compact.

References

  1. Ambrosio, L., Friesecke, G., Giannoulis, J.: Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions. Commun. Partial Diff. Eqs. 35, 1490–1515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data. Commun. Pure Appl. Math. 64, 1199–1242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrein, W.O., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta 46, 635–658 (1973/1974)

    Google Scholar 

  4. Anantharaman, A., Cancès, E.: Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. Henri. Poincaré, 26, 2425–2455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arveson, W.: An Invitation to C*-Algebra. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Babuška, I., Osborn, J.: Eigenvalue problems. In Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Bach, V., Delle Site, L. (eds.): Many-Electron Approaches in Physics, Chemistry and Mathematics. A Multidisciplinary View. Springer, Heidelberg/NewYork (2014)

    Google Scholar 

  8. Bach, V., Lieb, E.H., Loss, M., Solovej, J.P.: There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)

    Article  Google Scholar 

  9. Balian, R.: From Microphysics to Macrophysics, Methods and Applications of Statistical Physics. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Google Scholar 

  11. Bergeson, S.D. et al.: Measurement of the He Ground State Lamb Shift via the Two-Photon 1S1-2S1 Transition. Phys. Rev. Lett. 80, 3475–3478 (1998)

    Article  Google Scholar 

  12. Boulton, L., Levitin, M.: On the approximation of the eigenvalues of perturbed periodic Schrödinger operators. J. Phys. A 40, 9319–9329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boulton, L., Boussaïd, N., Lewin, M.: Generalised Weyl theorems and spectral pollution in the Galerkin method. J. Spectral Theory 2, 329–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourquin, R., Gradinaru, V., Hagedorn, G.A.: Non-adiabatic transitions near avoided crossings: theory and numerics. J. Math. Chem. 50, 602–619 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boys, S.F: Electronic wave functions: I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond. A 200, 542–554 (1950)

    Google Scholar 

  16. Cancès, E.: Self-consistent field (SCF) algorithms. In Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  17. Cancès, E., Le Bris, C.: On the convergence of SCF algorithms for the Hartree-Fock equations. ESAIM: M2AN 34, 749–774 (2000)

    Google Scholar 

  18. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: A primer. In Ciarlet, P., Le Bris, C. (eds.) Handbook of Numerical Analysis. Computational chemistry, vol. X, pp. 3–270. North-Holland, Amsterdam (2003)

    Google Scholar 

  19. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of the planewave discretization of orbital-free and Kohn-Sham models. ESAIM: M2AN 46, 341–388 (2012)

    Google Scholar 

  20. Cancès, E., Ehrlacher, V., Maday, Y.: Periodic Schrödinger operators with local defects and spectral pollution. SIAM J. Numer. Anal. 46, 3016–3035 (2012)

    Article  MATH  Google Scholar 

  21. Cancès, E., Ehrlacher, V., Maday, Y.: Non-consistent approximations of self-adjoint eigenproblems: application to the supercell method. Numer. Math. 28, 663–706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ceperley, D.M.: Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995)

    Article  Google Scholar 

  23. Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  24. Chen, H., Gong, X., He, L, Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn-Sham models. Adv. Comput. Math. 38, 225–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, New York (1979)

    Book  MATH  Google Scholar 

  26. Cotar, C., Friesecke, G., Klüppelberg, C.: Density functional theory and optimal transportation with Coulomb cost. Commun. Pure Appl. Math. 66, 548–599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Davis, E.B., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24, 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. Royal Soc. Lond. Ser. A 123, 714–733 (1929)

    Article  MATH  Google Scholar 

  29. Dreizler, R., Gross, E.K.U: Density Functional Theory. Springer, Berlin/Heidelberg (1990)

    Book  MATH  Google Scholar 

  30. Dyall, K.G., Faegri, K.: Introduction to Relativistic Quantum Chemistry. Oxford University Press, New York (2007)

    Google Scholar 

  31. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eikema, K.S.E., Ubachs, W., Vassen, W., Hogervorst, W.: Lamb shift measurement in the 1t1S ground state of helium. Phys. Rev. A 55, 1866–1884 (1997)

    Google Scholar 

  33. Enss V.: Asymptotic completeness for quantum mechanical potential scattering. I. Short range potentials. Commun. Math. Phys. 61, 285–291 (1978)

    MATH  Google Scholar 

  34. Fiolhais, C. Nogueira, F., Marques, M.A.L. (eds.): A Primer in Density Functional Theory. Lecture Notes in Physics, vol. 620. Springer, Berlin/New York (2003)

    Google Scholar 

  35. Fermanian Kammerer, C., Gérard, P., Lasser, C.: Wigner measure propagation and Lipschitz conical singularity for general initial data. Arch. Ration. Mech. Anal. 209, 209–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. FreeFEM++ Finite Element Software, Version v.53-1. http://www.freefem.org/. Released on 10 May 2017

  37. Friesecke, G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Rat. Mech. Anal. 169, 35–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. García-Cervera, C.J., Lu, J., Xuan, Y., E, W.: A linear scaling subspace iteration algorithm with optimally localized non-orthogonal wave functions for Kohn-Sham density functional theory. Phys. Rev. B 79, 115110 (2009)

    Google Scholar 

  39. Griesemer, M., Hantsch, F.: Unique solutions to Hartree-Fock equations for closed shell atoms. Arch. Ration. Mech. Anal. 203, 883–900 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Helgaker, T., Jorgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, New York (2000)

    Book  Google Scholar 

  41. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, New York (2016)

    Book  MATH  Google Scholar 

  42. Hunziker, M.: On the spectra of Schrodinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Karplus, M.: Development of multiscale models for complex chemical systems from H+H2 to biomolecules. Nobel Lecture delivered on December 8, 2013

    Google Scholar 

  44. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  45. Kohn, W.: Electronic structure of matter – Wave functions and density functionals. In Nobel Lectures, Chemistry 1996–2000. World Scientific Publishing, Singapore (2003)

    Google Scholar 

  46. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  47. Korobov, V., Yelkhovsky, A.: Ionization potential of the helium atom. Phys. Rev. Lett. 87, 193003 (2001)

    Article  Google Scholar 

  48. Le Bris, C.: A general approach for multiconfiguration methods in quantum molecular chemistry. Ann. Inst. Henri. Poincaré 11, 441–484 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Levitt, A.: Convergence of gradient-based algorithms for the Hartree-Fock equations. ESAIM: M2AN 46, 1321–1336 (2012)

    Google Scholar 

  50. Levitt M.: Birth and future of multiscale modeling for macromolecular systems. Nobel Lecture delivered on December 8, 2013

    Google Scholar 

  51. Lewin, M.: Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171, 83–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lewin, M., Séré, E.: Spectral pollution and how to avoid it (with applications to Dirac and periodic Schrödinger operators). Proc. Lond. Math. Soc. 100, 864–900 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lieb, E.H., Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lieb, E.H.: Density functional for coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  55. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  57. Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun. Math. Sci. 7, 755–777 (2009)

    Google Scholar 

  58. Lin, L., Chen, M., Yang, C., He, L.: Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion. J. Phys. Condens. Matter 25, 295501 (2013)

    Article  Google Scholar 

  59. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lu, J., Otto, F.: Nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsacker model. Commun. Pure Appl. Math. 67, 1605–1617 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Panati, G., Spohn, H., Teufel, S.: The time-dependent Born-Oppenheimer approximation. ESAIM: M2AN 41, 297–314 (2007)

    Google Scholar 

  62. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  Google Scholar 

  63. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  64. Pople, J.: Quantum Chemical Models. In Nobel Lectures, Chemistry 1996–2000. World Scientific Publishing, Singapore (2003)

    Google Scholar 

  65. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An introduction. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  66. Rader, T.: Theory of Microeconomics. Academic Press, New York (1972)

    MATH  Google Scholar 

  67. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic Press, New York/London (1975)

    MATH  Google Scholar 

  68. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York/London (1978)

    MATH  Google Scholar 

  69. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York/London (1980)

    MATH  Google Scholar 

  70. Ruelle D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A 61, 655–662 (1969)

    Google Scholar 

  71. Schneider, R.: Analysis of the projected coupled cluster method in electronic structure calculation. Numer. Math. 113, 433–471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Shargorodsky, E.: Geometry of higher order relative spectra and projection methods. J. Operator Theory 44, 43–62 (2000)

    MathSciNet  MATH  Google Scholar 

  73. Tao, J.M., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)

    Article  Google Scholar 

  74. Teller, E.: On the stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34, 627–631 (1962)

    Article  MATH  Google Scholar 

  75. Toulouse, J., Colonna, F., Savin, A.: Long-range/short-range separation of the electron-electron interaction in density-functional theory. Phys. Rev. A 70, 062505 (2005)

    Article  Google Scholar 

  76. Van Winter, C.: Theory of finite systems of particles. I. Mat.-Fys. Skr. Danske Vid. Selsk 1, 1–60 (1960)

    Google Scholar 

  77. Warshel, A.: Multiscale modeling of biological functions: from enzymes to molecular machines. Nobel Lecture delivered on December 8, 2013

    Google Scholar 

  78. Zhislin, G.M.: Investigation of the spectrum of the Schrodinger operator for a many particle system. Trudy Moskov. Mat. Ob-va 9, 81–120 (1960)

    Google Scholar 

  79. Zhislin, G.M., Sigalov, A.G.: The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations. Izv. Akad. Nauk SSSR Ser. Mat. 29, 835–860 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the organizers of the XVII Jacques-Louis Lions Spanish-French School on Numerical Simulation in Physics and Engineering for inviting me to deliver a course. Special thanks to Mariano Mateos Alberdi for the great local organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cancès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cancès, E. (2017). Introduction to First-Principle Simulation of Molecular Systems. In: Mateos, M., Alonso, P. (eds) Computational Mathematics, Numerical Analysis and Applications. SEMA SIMAI Springer Series, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-49631-3_2

Download citation

Publish with us

Policies and ethics