Exploiting Data of the Twitter Social Network Using Sentiment Analysis

  • David Gonzalez-MarronEmail author
  • David Mejia-Guzman
  • Angelica Enciso-Gonzalez
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 179)


Social Networks nowadays are producing an enormous quantity of data, this data transformed into information could be useful for the decision support systems. A new emerging technology denominated as Sentiment Analysis or Opinion Meaning extracts the opinion or sentiment of a particular text. The Twitter social network is a source of valuable information in simple text and appropriated to use this technology. In this paper is described the process used to select the most suitable algorithms to analyze tweets for particular words written in Spanish, also the results obtained by every algorithm are reported.


Future internet Social networks Sentiment analysis NoSQl databases 


  1. 1.
    Flores, J., Moran, J., Rodriguez, V.: Las Redes Sociales. USMP (2009).
  2. 2.
    Análisis de sentimiento: capturando la emoción. 27 de mayo de 2015, de Sitio web (2012).
  3. 3.
    Valverde J.C.: Sistema de extracción de entidades y análisis de opiniones en contenidos Web generados por usuarios. Trabajo de fin de grado. Universidad Autónoma de Madrid. Madrid, España (2013)Google Scholar
  4. 4.
    Gonzalez, D., Mejia, D., Mendoza, M., Enciso, A.: Desarrollo de una aplicación para la extracción de información de la red social Twitter y análisis de sentimientos de Tweets, Revista de Tecnologías de la Información, vol. 2, no. 2, ECORFAN (2015)Google Scholar
  5. 5.
    Internetlivestats (2016).

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • David Gonzalez-Marron
    • 1
    Email author
  • David Mejia-Guzman
    • 1
  • Angelica Enciso-Gonzalez
    • 1
  1. 1.Instituto Tecnológico de PachucaPachucaMexico

Personalised recommendations