Towards a Generic Ontology for Video Surveillance

  • Pablo Hernandez-Leal
  • Hugo Jair EscalanteEmail author
  • L. Enrique Sucar
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 179)


Video surveillance is an important problem that has been studied for several years. Nowadays, in the context of smart cities, intelligent video surveillance is an important topic which has several subproblems which need to be solved and then integrated. For example, on one side there are several algorithms for detection, recognition and tracking of objects and people. On the other side, it is necessary to recognize not only objects and persons but complex behaviors (fights, thefts, attacks). To solve these challenges, the use of ontologies has been proposed as a tool to reduce this gap between low and high level information. In this work, we present the foundations of an ontology to be used in an intelligent video surveillance system.


Video surveillance Ontology Event recognition 


  1. 1.
    Bagdanov, A.D., Bertini, M., Bimbo, A.D., Serra, G., Torniai, C.: Semantic annotation and retrieval of video events using multimedia ontologies. In: International Conference on Semantic Computing, Irvine, California, USA, pp. 713–720, July 2007Google Scholar
  2. 2.
    Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V.K., Strintzis, M.G.: Knowledge-assisted semantic video object detection. IEEE Trans. Circuits Syst. Video Technol. 15(10), 1210–1224 (2005)CrossRefGoogle Scholar
  3. 3.
    Georis, B., Maziere, M., Bremond, F.: A video interpretation platform applied to bank agency monitoring. In: Intelligent Distributed Surveilliance Systems, London, UK, pp. 46–50 (2004)Google Scholar
  4. 4.
    Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé OWL plugin: an open development environment for semantic web applications. In: McIlraith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30475-3_17 CrossRefGoogle Scholar
  5. 5.
    Mezaris, V., Kompatsiaris, I., Boulgouris, N.V., Strintzis, M.G.: Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans. Circuits Syst. Video Technol. 14(5), 606–621 (2004)CrossRefGoogle Scholar
  6. 6.
    SanMiguel, J.C., Martínez, J.M., García, A.: An ontology for event detection and its application in surveillance video. In: International Conference on Advanced Video and Signal Based Surveillance, Genova, Italy, pp. 220–225 (2009)Google Scholar
  7. 7.
    Kazi Tani, M.Y., Lablack, A., Ghomari, A., Bilasco, I.M.: Events detection using a video-surveillance ontology and a rule-based approach. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 299–308. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16181-5_21 Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Pablo Hernandez-Leal
    • 1
  • Hugo Jair Escalante
    • 1
    Email author
  • L. Enrique Sucar
    • 1
  1. 1.Instituto Nacional de AstrofísicaÓptica y Electrónica Sta. María TonantzintlaPueblaMexico

Personalised recommendations