Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art

  • I. S. M. RafiqulEmail author
  • A. M. M. Sakinah
  • A. W. Zularisam


Hemicellulose, a heteropolysaccharide, is a second major component of lignocellulosic biomass (LCB). It is a potential source of various rare sugars, mainly xylose, because the biomass is cheap, renewable, and available globally. Xylose can be an economic and attractive substrate to produce numerous specialty chemicals, especially xylitol. It is particularly significant to depolymerize the complex composition of biomass to recover hemicellulosic sugars and to prepare cellulosic part available for efficient digestion. LCB hydrolysis by various techniques is an inevitable method for depolymerizing hemicellulose into xylose and other hemicellulosic sugars. Among the general methods of hemicellulose hydrolysis (such as acid, autohydrolysis, enzyme, combined acid-enzyme, and autohydrolysis-enzyme), dilute acid hydrolysis is the most investigated and extensively applied method due to its simplicity, effectiveness, and economic feasibility. A number of operating variables such as temperature, catalyst load, reaction time, and liquid to solid ratio significantly affect the kinetics of hemicellulose hydrolysis. Dilute acid catalyzes hemicellulose fractionation at elevated temperature and pressure within short residence time. This chapter reviews the current literature on hemicellulose hydrolysis methods and identifies the most suitable way to recover maximum hemicellulosic sugars (viz., xylose and arabinose) from LCB.


Hemicellulose Hydrolysis Kinetics Lignocellulose Mathematical modeling Xylose 



The authors are grateful to the University of Chittagong, Bangladesh, Universiti Malaysia Pahang, and to the Ministry of Higher Education (MTUN-COE Research Grant No. RDU 121205), Malaysia, for providing necessary facilities and funds in order to conduct this study.


  1. Aachary AA, Prapulla SG (2009) Value addition to corncob: production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresour Technol 100:991–995. doi: 10.1016/j.biortech.2008.06.050 PubMedCrossRefGoogle Scholar
  2. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16. doi: 10.1111/j.1541-4337.2010.00135.x CrossRefGoogle Scholar
  3. Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545. doi: 10.1007/s10570-009-9327-8 CrossRefGoogle Scholar
  4. Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohyd Res 344:660–666. doi: 10.1016/j.carres.2009.01.015 CrossRefGoogle Scholar
  5. Amirkhani H, Yunus R, Rashid U, Salleh SF, Radhiah ABD, Syam S (2015) Low-temperature dilute acid hydrolysis of oil palm frond. Chem Eng Commun 202:1235–1244. doi: 10.1080/00986445.2014.918881 CrossRefGoogle Scholar
  6. Arvela PM, Salmi T, Holmbom B, Willför S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666. doi: 10.1021/cr2000042 CrossRefGoogle Scholar
  7. Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142:312–319. doi: 10.1016/j.biortech.2013.05.002 PubMedCrossRefGoogle Scholar
  8. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust 34:551–573. doi: 10.1016/j.pecs.2007.11.001 CrossRefGoogle Scholar
  9. Barbat A, Gloaguen V, Moine C, Catherine OS, Kraemer M, Rogniaux H, Ropartz D, Krausz P (2008) Structural characterization and cytotoxic properties of a 4-O-methylglucuronoxylan from Castanea sativa. 2. Evidence of a structure-activity relationship. J Nat Prod 71:1404–1409. doi: 10.1021/np800207g PubMedCrossRefGoogle Scholar
  10. Canettieri EV, Rocha GJM, Carvalho JA Jr, Silva JBA (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour Technol 98:422–428. doi: 10.1016/j.biortech.2005.12.012 PubMedCrossRefGoogle Scholar
  11. Canilha L, Carvalho W, Felipe MGA, Silva JBA (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Braz J Microbiol 39:333–336. doi: 10.1590/S1517-838220080002000025 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic Saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15. Scholar
  13. Carrasco F, Roy C (1992) Kinetic study of dilute-acid prehydrolysis of xylan-containing biomass. Wood Sci Technol 26:189–208. doi: 10.1007/BF00224292 Google Scholar
  14. Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2004a) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113(116):1059–1072. doi: 10.1385/ABAB:115:1-3:1059 PubMedCrossRefGoogle Scholar
  15. Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM (2004b) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91:93–100. doi: 10.1016/S0960-8524(03)00148-2 PubMedCrossRefGoogle Scholar
  16. Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gírio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40:1215–1223. doi: 10.1016/j.procbio.2004.04.015 CrossRefGoogle Scholar
  17. Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221. doi: 10.1016/j.biortech.2011.10.083 PubMedCrossRefGoogle Scholar
  18. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431. doi: 10.1007/s13205-013-0167-8 PubMedCentralCrossRefGoogle Scholar
  19. Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38:105–109. doi: 10.1016/j.bej.2007.07.012 CrossRefGoogle Scholar
  20. Chong AR, Ramírez JA, Garrote G, Vázquez M (2004) Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng 61:143–152. doi: 10.1016/S0260-8774(03)00080-3 CrossRefGoogle Scholar
  21. Chundawat SPS, Bellesia G, Uppugundla N, Sousa LC, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN Jr, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174. doi: 10.1021/ja2011115 PubMedCrossRefGoogle Scholar
  22. Cipriani TR, Mellinger CG, Souza LM, Baggio CH, Freitas CS, Marquez MCA, Gorin PAJ, Sassaki GL, Iacomini M (2008) Acidic heteroxylans from medicinal plants and their anti ulcer activity. Carbohyd Polym 74:274–278. doi: 10.1016/j.carbpol.2008.02.012 CrossRefGoogle Scholar
  23. Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium catalyst. Catal Lett 133:167–174. doi: 10.1007/s10562-009-0136-3 CrossRefGoogle Scholar
  24. Dhepe PL, Fukuoka A (2008) Cellulose conversion under heterogeneous catalysis. ChemSusChem 1:969–975. doi: 10.1002/cssc.200800129 PubMedCrossRefGoogle Scholar
  25. Dror Y, Cohen Y, Rozen RY (2006) Structure of gum Arabic in aqueous solution. J Polym Sci Part B Polym Phys 44:3265–3271. doi: 10.1002/polb.20970 CrossRefGoogle Scholar
  26. El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101:9321–9329. doi: 10.1016/j.biortech.2010.06.143 PubMedCrossRefGoogle Scholar
  27. Escribá LD, Porcar M (2010) Rice straw management: the big waste. Biofuels Bioprod Biorefin 4:154–159. doi: 10.1002/bbb.196 CrossRefGoogle Scholar
  28. Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198. doi: 10.1016/j.copbio.2014.01.002 PubMedCrossRefGoogle Scholar
  29. Ewanick S, Bura R (2011) The effect of biomass moisture content on bioethanol yields from steam pretreated switchgrass and sugarcane bagasse. Bioresour Technol 102:2651–2658. doi: 10.1016/j.biortech.2010.10.117 PubMedCrossRefGoogle Scholar
  30. Falck P, Atsawanan SP, Grey C, Immerzeel P, Stalbrand H, Adlercreutz P, Karlsson EN (2013) Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. J Agric Food Chem 61:7333–7340. doi: 10.1021/jf401249g PubMedCrossRefGoogle Scholar
  31. Garrote G, Domínguez H, Parajó JC (2001) Kinetic modeling of corncob autohydrolysis. Process Biochem 36:571–578. doi: 10.1016/S0032-9592(00)00253-3 CrossRefGoogle Scholar
  32. Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. J Food Eng 52:211–218. doi: 10.1016/S0260-8774(01)00108-X CrossRefGoogle Scholar
  33. Garrote G, Domínguez H, Parajó JC (2004) Production of substituted oligosaccharides by hydrolytic processing of barley husks. Ind Eng Chem Res 43:1608–1614. doi: 10.1021/ie0342762 CrossRefGoogle Scholar
  34. Garrote G, Falqué E, Domínguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98:1951–1957. doi: 10.1016/j.biortech.2006.07.049 PubMedCrossRefGoogle Scholar
  35. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Łukasik RB (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. doi: 10.1016/j.biortech.2010.01.088 PubMedCrossRefGoogle Scholar
  36. Hanim SS, Noor MAM, Rosma A (2011) Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour Technol 102:1234–1239. doi: 10.1016/j.biortech.2010.08.017 CrossRefGoogle Scholar
  37. Hendriks ATWM, Zeeman G (2009) Pretreatment to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi: 10.1016/j.biortech.2008.05.027 PubMedCrossRefGoogle Scholar
  38. Herrera A, Téllez-Luis SJ, Ramírez JA, Vázquez M (2003) Production of xylose from sorghum straw using hydrochloric acid. J Cereal Sci 37:267–274. doi: 10.1006/jcrs.2002.0510 CrossRefGoogle Scholar
  39. Herrera A, Téllez-Luis SJ, González-Cabriales JJ, Ramírez JA, Vázquez M (2004) Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J Food Eng 63:103–109. doi: 10.1016/S0260-8774(03)00288-7 CrossRefGoogle Scholar
  40. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134. doi: 10.1002/bbb.4 CrossRefGoogle Scholar
  41. Kim YS, Lim YR, Oh DK (2012) L-Arabinose production from sugar beet arabinan by immobilized endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus in a packed-bed reactor. J Biosci Bioeng 113:239–241. doi: 10.1016/j.jbiosc.2011.10.008 PubMedCrossRefGoogle Scholar
  42. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26(3):389–407. doi: 10.1007/s11274-009-0190-4 CrossRefGoogle Scholar
  43. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi: 10.1021/ie801542g CrossRefGoogle Scholar
  44. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380. doi: 10.1016/S0961-9534(02)00066-1 CrossRefGoogle Scholar
  45. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403. doi: 10.1016/j.cej.2009.10.061 CrossRefGoogle Scholar
  46. Li Z, Qu H, Li C, Zhou X (2013) Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresour Technol 149:413–419. doi: 10.1016/j.biortech.2013.09.101 PubMedCrossRefGoogle Scholar
  47. Liavoga AB, Bian Y, Seib PA (2007) Release of D-xylose from wheat straw by acid and xylanase hydrolysis and purification of xylitol. J Agric Food Chem 55:7758–7766. doi: 10.1021/jf070862k PubMedCrossRefGoogle Scholar
  48. Liaw WC, Chen CS, Chang WS, Chen KP (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105. doi: 10.1263/jbb.105.97 PubMedCrossRefGoogle Scholar
  49. Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem Eng Technol 30:938–944. doi: 10.1002/ceat.200700035 CrossRefGoogle Scholar
  50. Makishima S, Mizuno M, Sato N, Shinji K, Suzuki M, Nozaki K, Takahashi F, Kanda T, Amano Y (2009) Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob. Bioresour Technol 100:2842–2848. doi: 10.1016/j.biortech.2008.12.023 PubMedCrossRefGoogle Scholar
  51. Marton JM, Felipe MGA, Silva JBA, Pessoa A Jr (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Braz J Chem Eng 23:9–21. doi: 10.1590/S0104-66322006000100002 CrossRefGoogle Scholar
  52. Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178. doi: 10.1007/s00253-008-1423-4 PubMedCrossRefGoogle Scholar
  53. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi: 10.1016/j.biortech.2004.06.025 PubMedCrossRefGoogle Scholar
  54. Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923. doi: 10.1016/j.procbio.2006.05.011 CrossRefGoogle Scholar
  55. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi: 10.1016/j.biortech.2003.10.005 PubMedCrossRefGoogle Scholar
  56. Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agric 85:2453–2460. doi: 10.1002/jsfa.2276 CrossRefGoogle Scholar
  57. Mussatto SI, Roberto IC (2008) Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem 43:540–546. doi: 10.1016/j.procbio.2008.01.013 CrossRefGoogle Scholar
  58. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43:124–129. doi: 10.1016/j.enzmictec.2007.11.006 CrossRefGoogle Scholar
  59. Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohyd Polym 69:20–28. doi: 10.1016/j.carbpol.2006.08.020 CrossRefGoogle Scholar
  60. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27. doi: 10.1016/S0168-1656(00)00385-0 PubMedCrossRefGoogle Scholar
  61. Olsson M (2006) Wheat straw and peat for fuel pellets–organic compounds from combustion. Biomass Bioenergy 30:555–564. doi: 10.1016/j.biombioe.2006.01.005 CrossRefGoogle Scholar
  62. Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi: 10.1016/S0960-8524(99)00161-3 CrossRefGoogle Scholar
  63. Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. doi: 10.1016/S0960-8524(99)00160-1 CrossRefGoogle Scholar
  64. Parajó JC, Garrote G, Cruz JM, Domínguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120. doi: 10.1016/j.tifs.2003.09.009 CrossRefGoogle Scholar
  65. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi: 10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  66. Pauly M, Gille S, Liu L, Mansoori N, Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642. doi: 10.1007/s00425-013-1921-1 PubMedCrossRefGoogle Scholar
  67. Rabelo SC, Fonseca NAA, Andrade RR, Filho RM, Costa AC (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 35:2600–2607. doi: 10.1016/j.biombioe.2011.02.042 CrossRefGoogle Scholar
  68. Rafiqul ISM, Sakinah AMM (2012a) Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chem Eng Sci 71:431–437. doi: 10.1016/j.ces.2011.11.007 CrossRefGoogle Scholar
  69. Rafiqul ISM, Sakinah AMM (2012b) Design of process parameters for the production of xylose from wood sawdust. Chem Eng Res Des 90:1307–1312. doi: 10.1016/j.cherd.2011.12.009 CrossRefGoogle Scholar
  70. Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29:127–156. doi: 10.1080/87559129.2012.714434 CrossRefGoogle Scholar
  71. Rafiqul ISM, Sakinah AMM, Karim R (2014) Production of xylose from Meranti wood sawdust by dilute acid hydrolysis. Appl Biochem Biotechnol 174:542–555. doi: 10.1007/s12010-014-1059-z PubMedCrossRefGoogle Scholar
  72. Rafiqul ISM, Sakinah AMM, Zularisam AW (2015a) Enzymatic production of bioxylitol from sawdust hydrolysate: screening of process parameters. Appl Biochem Biotechnol 176:1071–1083. doi: 10.1007/s12010-015-1630-2 PubMedCrossRefGoogle Scholar
  73. Rafiqul ISM, Sakinah AMM, Zularisam AW (2015b) Evaluation of sawdust hemicellulosic hydrolysate for bioproduction of xylitol by enzyme xylose reductase. Food Bioprod Process 94:82–89. doi: 10.1016/j.fbp.2015.01.005 CrossRefGoogle Scholar
  74. Rafiqul ISM, Sakinah AMM, Zularisam AW (2015c) Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol Lett 37:191–196. doi: 10.1007/s10529-014-1672-5 PubMedCrossRefGoogle Scholar
  75. Rahman SHA, Choudhury JP, Ahmad AL (2006) Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem Eng J 30:97–103. doi: 10.1016/j.bej.2006.02.009 CrossRefGoogle Scholar
  76. Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107. doi: 10.1016/j.copbio.2013.11.013 PubMedCrossRefGoogle Scholar
  77. Reyes P, Mendonça RT, Aguayo MG, Rodríguez J, Vega B, Fardim P (2013) Extraction and characterization of hemicelluloses from Pinus radiata and its feasibility for bioethanol production. Rev Árvore 37:175–180. doi: 10.1590/S0100-67622013000100018 CrossRefGoogle Scholar
  78. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 17:171–176. doi: 10.1016/S0926-6690(02)00095-X CrossRefGoogle Scholar
  79. Romero I, Ruiz E, Castro E, Moya M (2010) Acid hydrolysis of olive tree biomass. Chem Eng Res Des 88:633–640. doi: 10.1016/j.cherd.2009.10.007 CrossRefGoogle Scholar
  80. Saeman JF (1945) Kinetics of wood saccharification: hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52. doi: 10.1021/ie50421a009 CrossRefGoogle Scholar
  81. Salvi DA, Aita GM, Robert D, Bazan V (2010) Ethanol production from sorghum by a dilute ammonia pretreatment. J Ind Microbiol Biotechnol 37:27–34. doi: 10.1007/s10295-009-0645-5 PubMedCrossRefGoogle Scholar
  82. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205. doi: 10.1016/j.biortech.2012.02.036 PubMedCrossRefGoogle Scholar
  83. Sarkar N, Aikat K (2013) Kinetic study of acid hydrolysis of rice straw. ISRN Biotechnol ID 170615 :1−5. doi:10.5402/2013/170615Google Scholar
  84. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. doi: 10.1146/annurev-arplant-042809-112315 PubMedCrossRefGoogle Scholar
  85. Scordia D, Cosentino SL, Lee JW, Jeffries TW (2011) Dilute oxalic acid pretreatment for biorefining gaint reed (Arundo donax L.). Biomass Bioenergy 35:3018–3024. doi: 10.1016/j.biombioe.2011.03.046 CrossRefGoogle Scholar
  86. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohyd Polym 117:624–631. doi: 10.1016/j.carbpol.2014.10.012 CrossRefGoogle Scholar
  87. Sousa LC, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347. doi: 10.1016/j.copbio.2009.05.003 CrossRefGoogle Scholar
  88. Spiridon I, Popa VI (2008) Hemicelluloses: major sources, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 289–304. doi:10.1016/B978-0-08-045316-3.00013-2. isbn:9780080560519Google Scholar
  89. Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96:1599–1606. doi: 10.1016/j.biortech.2004.12.022 PubMedCrossRefGoogle Scholar
  90. Sun HJ, Yoshida S, Park NH, Kusakabe I (2002) Preparation of (1→4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan: suitability of cotton-seed xylan as a starting material for the preparation of (1→4)-β-D-xylooligosaccharides. Carbohyd Res 337:657–661. doi: 10.1016/S0008-6215(02)00031-9 CrossRefGoogle Scholar
  91. Sun Y, Yang G, Jia Z, Wen C, Zhang L (2014) Acid hydrolysis of corn stover using hydrochloric acid: kinetic modeling and statistical optimization. Chem Ind Chem Eng Q 20:531–539. doi: 10.2298/CICEQ130911035S CrossRefGoogle Scholar
  92. Swati G, Haldar S, Ganguly A, Chatterjee PK (2013) Investigations on the kinetics and thermodynamics of dilute acid hydrolysis of Parthenium hysterophorus L. substrate. Chem Eng J 229:111–117. doi: 10.1016/j.cej.2013.05.111 CrossRefGoogle Scholar
  93. Swennen K, Courtin CM, Bruggen B, Vandecasteele C, Delcour JA (2005) Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohyd Polym 62:283–292. doi: 10.1016/j.carbpol.2005.08.001 CrossRefGoogle Scholar
  94. Tada K, Kanno T, Horiuchi J (2012) Enhanced production of bioxylitol from corn cobs by Candida magnolia. Ind Eng Chem Res 51:10008–10014. doi: 10.1021/ie202800h CrossRefGoogle Scholar
  95. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:707–738. doi: 10.15376/biores.10.1.1213-1223 Google Scholar
  96. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi: 10.3390/ijms9091621 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Taherzadeh MJ, Niklasson C, Lidén G (2000) On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol Bioeng 69:330–338. doi: 10.1002/1097-0290(20000805)69 PubMedCrossRefGoogle Scholar
  98. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753. doi: 10.1016/j.biortech.2009.11.080 PubMedCrossRefGoogle Scholar
  99. Téllez-Luis SJ, Ramírez JA, Vázquez M (2002) Mathematical modelling of hemicellulosic sugar production from sorghum straw. J Food Eng 52:285–291. doi: 10.1016/S0260-8774(01)00117-0 CrossRefGoogle Scholar
  100. Teng C, Yan Q, Jiang Z, Fan G, Shi B (2010) Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour Technol 101:7679–7682. doi: 10.1016/j.biortech.2010.05.004 PubMedCrossRefGoogle Scholar
  101. Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology. Springer, New York, NY, pp 3–42. doi:10.1007/978-3-642-17370-7-1Google Scholar
  102. Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24. doi: 10.1016/j.enzmictec.2005.10.032 CrossRefGoogle Scholar
  103. Visser EM, Leal TF, Almeida MN, Guimaráes VM (2015) Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling. Biotechnol Biofuels 8:1–9. doi: 10.1186/s13068-014-0185-8 CrossRefGoogle Scholar
  104. Vithanage LNG, Barbosa AM, Kankanamge GRN, Rakshit SK, Dekker RFH (2016) Valorization of hemicelluloses: production of bioxylitol from poplar wood prehydrolyzates by Candida guilliermondii FTI 20037. Bioenerg Res 9(1):181–197. doi: 10.1007/s12155-015-9673-3 CrossRefGoogle Scholar
  105. Wang GS, Lee JW, Zhu JY, Jeffries TW (2011) Dilute acid pretreatment of corncob for efficient sugar production. Appl Biochem Biotechnol 163:658–668. doi: 10.1007/s12010-010-9071-4 PubMedCrossRefGoogle Scholar
  106. Willför S, Sundberg K, Pranovich A, Holmbom B (2005) Polysaccharides in some industrially important hardwood species. Wood Sci Technol 39:601–617. doi: 10.1007/s00226-005-0039-4 CrossRefGoogle Scholar
  107. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799. doi: 10.1016/j.biortech.2011.01.023 PubMedCrossRefGoogle Scholar
  108. Yang CH, Yang SF, Liu WH (2007) Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. J Agric Food Chem 55:3955–3959. doi: 10.1021/jf0635964 PubMedCrossRefGoogle Scholar
  109. Zhang D, Ong YL, Li Z, Wu JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch fiber for high yield production of xylose. Chem Eng J 181(182):636–642. doi: 10.1016/j.cej.2011.12.030 CrossRefGoogle Scholar
  110. Zhang HJ, Fan XG, Qiu XL, Zhang QX, Wang WY, Li SX, Deng LH, Koffas MAG, Wei DS, Yuan QP (2014) A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst Eng 37:2425–2436. doi: 10.1007/s00449-014-1219-0 PubMedCrossRefGoogle Scholar
  111. Zhao XB, Wang L, Liu DH (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956. doi: 10.1002/jctb.1889 CrossRefGoogle Scholar
  112. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828. doi: 10.1016/j.biortech.2007.07.033 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • I. S. M. Rafiqul
    • 1
    Email author
  • A. M. M. Sakinah
    • 2
  • A. W. Zularisam
    • 3
  1. 1.Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
  2. 2.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangKuantanMalaysia
  3. 3.Faculty of Engineering TechnologyUniversiti Malaysia PahangKuantanMalaysia

Personalised recommendations