Advertisement

Platforms for Functionalization of Cellulose

  • Haisong Qi
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The shaping, chemical modification, and functionalization of cellulose are largely depended on the process of dissolution in an efficient solvent. Viscose process as the most important method for production of cellulose-regenerated materials was introduced. The dissolution of cellulose in several other most frequently used eco-friendly solvents was also discussed, including cellulose carbamate, N-methylmorpholine-N-oxide, aqueous alkali system, and ionic liquids. These processes provide efficient platforms for development of new regenerated materials and other products based on cellulose.

Keywords

Cellulose solvents Viscose process Carbamate NMMO Aqueous alkali system Ionic liquids 

References

  1. 1.
    Hermanutz F, Gähr F, Uerdingen E et al (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27CrossRefGoogle Scholar
  2. 2.
    Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  3. 3.
    Cross CF, Bevan EJ, Beadle C (1894) US Patent 520770Google Scholar
  4. 4.
    Hill JW, Jacobson RA (1938) Method for manufacturing cellulose carbamate. US Patent 2134825Google Scholar
  5. 5.
    Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRefGoogle Scholar
  6. 6.
    Yin C, Shen X (2007) Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation: structure and rheological properties. Eur Polym J 43:2111–2116CrossRefGoogle Scholar
  7. 7.
    Guo Y, Zhou J, Song Y et al (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508CrossRefGoogle Scholar
  8. 8.
    Fu F, Zhou J, Zhou X et al (2014) Green method for the production of cellulose multifilament from cellulose carbamate on a pilot-scale. ACS Sustain Chem Eng 2:2363–2370CrossRefGoogle Scholar
  9. 9.
    Fu F, Guo Y, Wang Y et al (2014) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 212:819–830Google Scholar
  10. 10.
    Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate−NaOH/ZnO aqueous Solution. ACS Sustain Chem Eng 2:2604–2612CrossRefGoogle Scholar
  11. 11.
    Graenacher C, Sallmann R (1936) Assisting agents for the textile industry. US patent 2060568 AGoogle Scholar
  12. 12.
    Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US patent 3447939 AGoogle Scholar
  13. 13.
    Fink H-P, Weigel P, Purz H et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  14. 14.
    Rosenau T, Potthast A, Sixta H et al (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837CrossRefGoogle Scholar
  15. 15.
    Maia E, Peguy A, Perez S (1981) Cellulose organic solvents. I. the structures of anhydrous N-methylmorpholine N-oxide and N-methylmorpholine N-oxide monohydrate. Acta Cryst B37:1858–1862CrossRefGoogle Scholar
  16. 16.
    Rosenau T, Potthast A, Adorjan I et al (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)—degradation processes and stabilizers. Cellulose 9:283–291CrossRefGoogle Scholar
  17. 17.
    Sobue H, Kiessig H, Hess K (1939) The system: cellulose-sodium hydroxide-water in relation to the temperature. Z Phys Chem B43:309–328Google Scholar
  18. 18.
    Kamide K, Okajima K, Matsui T et al (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polymer 16:857–866CrossRefGoogle Scholar
  19. 19.
    Yamane C, Saito M, Okajima K (1996) Manufacture of new cellulosic fibers from a spinning bath of an aqueous solution of alkali—soluble cellulose and caustic soda. Part 1. Development of a method for industrial preparation of an aqueous solution of highly soluble cellulose and caustic soda. Sen’i GakkaishGoogle Scholar
  20. 20.
    Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous solutions. Cellulose 5:309–319CrossRefGoogle Scholar
  21. 21.
    Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370CrossRefGoogle Scholar
  22. 22.
    Zhou J, Zhang L (2000) The solubility of cellulose in NaOH/ urea aqueous solution. Polym J 10:866–870CrossRefGoogle Scholar
  23. 23.
    Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRefGoogle Scholar
  24. 24.
    Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184CrossRefGoogle Scholar
  25. 25.
    Ruan D, Zhang L, Zhou J et al (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112CrossRefGoogle Scholar
  26. 26.
    Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796CrossRefGoogle Scholar
  27. 27.
    Qi H, Yang Q, Zhang L et al (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245CrossRefGoogle Scholar
  28. 28.
    Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRefGoogle Scholar
  29. 29.
    Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  30. 30.
    Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRefGoogle Scholar
  31. 31.
    Bentivoglio G, Röder T, Fasching M et al (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 86:154–161Google Scholar
  32. 32.
    Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  33. 33.
    Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRefGoogle Scholar
  34. 34.
    Pinkert A, Marsh KN, Pang S et al (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRefGoogle Scholar
  35. 35.
    Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5CrossRefGoogle Scholar
  36. 36.
    King AWT, Asikkala J, Mutikainen I et al (2011) Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed 50:6301–6305CrossRefGoogle Scholar
  37. 37.
    Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48:1808–1810CrossRefGoogle Scholar
  38. 38.
    Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRefGoogle Scholar
  39. 39.
    Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525CrossRefGoogle Scholar
  40. 40.
    Sun N, Rahman M, Qin Y et al (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp and Paper Engineering, School of Light Industry Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations