Skip to main content

Robotic Instrumentation, Personnel, and Operating Room Setup

  • Chapter
  • First Online:
Atlas of Head and Neck Robotic Surgery

Abstract

Robotic-assisted surgery (RAS) is becoming an increasingly important tool for certain diseases treated by the otolaryngologist and head and neck surgeon. As RAS expertise evolves and its use increases, many studies are underway to evaluate RAS as a replacement or alternative to established surgical techniques known to be invasive, potentially disfiguring, and sometimes devastating in terms of functional morbidity. Transoral robotic surgery (TORS) is the prime example of evolution within this surgical field for the management of primary or recurrent benign and malignant lesions of the pharynx and larynx, in particular the oropharynx and supraglottic larynx [1–4]. RAS has been rapidly integrated into the field due to a number factors, including (1) less morbid surgical access, (2) improved visualization, and (3) enhanced surgical precision in confined anatomic spaces [5–8]. It has also been championed for its cosmetic appeal, which allows for the avoidance of a conspicuous incision, such as for transaxillary thyroidectomy/parathyroidectomy or retroauricular neck dissection [9–11]. Moreover, RAS has been described for use in free tissue reconstruction as well as in the surgical management of sleep apnea [12–14]. The focus of this chapter is to provide general guidelines for operating room setup and communication, surgical instrumentation and equipment, and the necessary expertise of surgical personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLeod IK, Melder PC. Da Vinci robot-assisted excision of a vallecular cyst: a case report. Ear Nose Throat J. 2005;84(3):170–2.

    PubMed  Google Scholar 

  2. O’Malley Jr BW, et al. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116(8):1465–72.

    Article  PubMed  Google Scholar 

  3. Weinstein GS, et al. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol. 2007;116(1):19–23.

    Article  PubMed  Google Scholar 

  4. Weinstein GS, et al. Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg. 2007;133(12):1220–6.

    Article  PubMed  Google Scholar 

  5. Park YM, et al. Feasibility of transoral robotic hypopharyngectomy for early-stage hypopharyngeal carcinoma. Oral Oncol. 2010;46(8):597–602.

    Article  PubMed  Google Scholar 

  6. Kayhan FT, Kaya KH, Sayin I. Transoral robotic cordectomy for early glottic carcinoma. Ann Otol Rhinol Laryngol. 2012;121(8):497–502.

    Article  PubMed  Google Scholar 

  7. O’Malley Jr BW, Weinstein GS. Robotic skull base surgery: preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg. 2007;133(12):1215–9.

    Article  PubMed  Google Scholar 

  8. Hanna EY, et al. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg. 2007;133(12):1209–14.

    Article  PubMed  Google Scholar 

  9. Kang SW, et al. Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery. 2009;146(6):1048–55.

    Article  PubMed  Google Scholar 

  10. Tolley N, et al. Robotic-assisted parathyroidectomy: a feasibility study. Otolaryngol Head Neck Surg. 2011;144(6):859–66.

    Article  PubMed  Google Scholar 

  11. Lee HS, et al. Robot-assisted Supraomohyoid neck dissection via a modified face-lift or retroauricular approach in early-stage cN0 squamous cell carcinoma of the oral cavity: a comparative study with conventional technique. Ann Surg Oncol. 2012;19(12):3871–8.

    Article  PubMed  Google Scholar 

  12. Mukhija VK, et al. Transoral robotic assisted free flap reconstruction. Otolaryngol Head Neck Surg. 2009;140(1):124–5.

    Article  PubMed  Google Scholar 

  13. Vicini C, et al. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: a preliminary report. ORL J Otorhinolaryngol Relat Spec. 2010;72(1):22–7.

    Article  PubMed  Google Scholar 

  14. Lee JM, et al. Transoral robot-assisted lingual tonsillectomy and uvulopalatopharyngoplasty for obstructive sleep apnea. Ann Otol Rhinol Laryngol. 2012;121(10):635–9.

    Article  PubMed  Google Scholar 

  15. Rivera-Serrano CM, et al. A transoral highly flexible robot: novel technology and application. Laryngoscope. 2012;122(5):1067–71.

    Article  PubMed  Google Scholar 

  16. Johnson PJ, et al. Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope. 2013;123(5):1168–72.

    Article  PubMed  Google Scholar 

  17. Solares CA, Strome M. Transoral robot-assisted CO2 laser supraglottic laryngectomy: experimental and clinical data. Laryngoscope. 2007;117(5):817–20.

    Article  PubMed  Google Scholar 

  18. Kucur C, et al. Transoral robot-assisted carbon dioxide laser surgery for hypopharyngeal cancer. Head Neck. 2015;37(5):743–5.

    Article  PubMed  Google Scholar 

  19. Desai SC, et al. Transoral robotic surgery using a carbon dioxide flexible laser for tumors of the upper aerodigestive tract. Laryngoscope. 2008;118(12):2187–9.

    Article  PubMed  Google Scholar 

  20. Lee J, Chung WY. Robotic surgery for thyroid disease. Eur Thyroid J. 2013;2(2):93–101.

    PubMed  PubMed Central  Google Scholar 

  21. Landry CS, et al. Robot assisted transaxillary surgery (RATS) for the removal of thyroid and parathyroid glands. Surgery. 2011;149(4):549–55.

    Article  PubMed  Google Scholar 

  22. Kuppersmith RB, Holsinger FC. Robotic thyroid surgery: an initial experience with North American patients. Laryngoscope. 2011;121(3):521–6.

    Article  PubMed  Google Scholar 

  23. Lee KE, Choi JY, Youn YK. Bilateral axillo-breast approach robotic thyroidectomy. Surg Laparosc Endosc Percutan Tech. 2011;21(4):230–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kupferman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goepfert, R., Kupferman, M. (2017). Robotic Instrumentation, Personnel, and Operating Room Setup. In: Gil, Z., Amit, M., Kupferman, M. (eds) Atlas of Head and Neck Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-49578-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49578-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49576-7

  • Online ISBN: 978-3-319-49578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics