Advertisement

Relating Entanglement and Nonlocality

  • Jordi Tura i Brugués
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Both entanglement and nonlocality are central concepts in modern physics. Their relation, however, is not fully understood yet. In 1964, Bell showed that some entangled states are nonlocal, in the sense that the statistics obtained when certain measurements are performed on them would violate a Bell inequality (Bell, Physics, 1:195–200, 1964, [Bel64]). In 1991, Gisin showed that every pure bipartite entangled state is nonlocal (Gisin, Phys Lett A 154:201–202, 1991, [Gis91]), a result that was later generalized to any multipartite pure entangled quantum state a bit later by Popescu and Rohrlich (Phys Lett A 166:293–297, 1992, [PR92]). Thus, one could naively identify nonlocality and entanglement, however, this intuition is—like in many situations in quantum physics—misleading, as the relation between those two quantum information resources is more involved.

References

  1. [ADA14]
    R. Augusiak, M. Demianowicz, A. Acín, Local hidden-variable models for entangled quantum states. J. Phys. A Math. Theor. 47(42), 424002 (2014). doi: 10.1088/1751-8113/47/42/424002 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [AGT06]
    A. Acín, N. Gisin, B. Toner, Grothendieck’s constant and local models for noisy entangled quantum states. Phys. Rev. A 73(6), 062105 (2006). doi: 10.1103/PhysRevA.73.062105 ADSMathSciNetCrossRefGoogle Scholar
  3. [Alm+07]
    M.L. Almeida, S. Pironio, J. Barrett, G. Tóth, A. Acín, Noise robustness of the nonlocality of entangled quantum states. Phys. Rev. Lett. 99(4), 040403 (2007). doi: 10.1103/PhysRevLett.99.040403 ADSCrossRefGoogle Scholar
  4. [Aug+15]
    R. Augusiak, M. Demianowicz, J. Tura, A. Acín, Entanglement and nonlocality are inequivalent for any number of parties. Phys. Rev. Lett. 115(3), 030404 (2015). doi: 10.1103/PhysRevLett.115.030404 ADSCrossRefGoogle Scholar
  5. [Ban+13]
    J.-D. Bancal, J. Barrett, N. Gisin, S. Pironio, Definitions of multipartite nonlocality. Rev. A 88(1), 014102 (2013). doi: 10.1103/PhysRevA.88.014102 CrossRefGoogle Scholar
  6. [Bar02]
    J. Barrett, Nonsequential positive - operator - valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65(4), 042302 (2002). doi: 10.1103/PhysRevA.65.042302 ADSMathSciNetCrossRefGoogle Scholar
  7. [Bel64]
    J.S. Bell, On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  8. [Fin03]
    S.R. Finch, Mathematical Constants Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2003). ISBN:9780521818056Google Scholar
  9. [Gal+12]
    R. Gallego, L.E. Würflinger, A. Acín, M. Navascués, Operational framework for nonlocality. Phys. Rev. Lett 109(7), 070401 (2012). doi: 10.1103/PhysRevLett.109.070401 ADSCrossRefGoogle Scholar
  10. [Gis91]
    N. Gisin, Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991). doi: 10.1016/0375-9601(91)90805-I. ISSN:0375-9601ADSMathSciNetCrossRefGoogle Scholar
  11. [Gis96]
    N. Gisin, Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210(3), 151–156 (1996). doi: 10.1016/S0375-9601(96)80001-6. ISSN: 0375-9601ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [HH99]
    M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59(6), 4206–4216 (1999). doi: 10.1103/PhysRevA.59.4206 ADSCrossRefGoogle Scholar
  13. [Hir+13]
    F. Hirsch, M.T. Quintino, J. Bowles, N. Brunner, Genuine hidden quantum nonlocality. Phys. Rev. Lett. 111(16), 160402 (2013). doi: 10.1103/PhysRevLett.111.160402 ADSCrossRefGoogle Scholar
  14. [Pal12]
    C. Palazuelos, Superactivation of quantum nonlocality. Phys. Rev. Lett. 109(19), 190401 (2012). doi: 10.1103/PhysRevLett.109.190401 ADSCrossRefGoogle Scholar
  15. [Pop95]
    S. Popescu, Bell’s inequalities and density matrices: revealing “hidden” nonlocality. Phys. Rev. Lett. 74(14), 2619–2622 (1995). doi: 10.1103/PhysRevLett.74.2619 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [PR92]
    S. Popescu, D. Rohrlich, Generic quantum nonlocality. Phys. Lett. A 166(5–6), 293–297 (1992). doi: 10.1016/0375-9601(92)90711-T. ISSN: 0375-9601ADSMathSciNetCrossRefGoogle Scholar
  17. [Sch35]
    E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31(4), 555–563 (1935). doi: 10.1017/S0305004100013554. ISSN: 1469-8064ADSCrossRefzbMATHGoogle Scholar
  18. [Sve87]
    G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066–3069 (1987). doi: 10.1103/PhysRevD.35.3066 ADSMathSciNetCrossRefGoogle Scholar
  19. [TA06]
    G. Tóth, A. Acín, Genuine tripartite entangled states with a local hidden-variable model. Phys. Rev. A 74(3), 030306 (2006). doi: 10.1103/PhysRevA.74.030306 ADSCrossRefGoogle Scholar
  20. [Wer89]
    R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi: 10.1103/PhysRevA.40.4277 ADSCrossRefGoogle Scholar
  21. [WJD07]
    H.M. Wiseman, S.J. Jones, A.C. Doherty, Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98(14), 140402 (2007). doi: 10.1103/PhysRevLett.98.140402 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [Cav+11]
    C. Daniel, M.L. Almeida, S. Valerio, A. Antonio, Quantum networks reveal quantum nonlocality. Nat. Commun. 2, 184 (2011). doi: 10.1038/ncomms1193 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordi Tura i Brugués
    • 1
  1. 1.ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and TechnologyCastelldefels (Barcelona)Spain

Personalised recommendations