Advertisement

PPT Entangled Symmetric States

  • Jordi Tura i Brugués
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Characterization of entanglement in composite quantum systems is a difficult task. Already in the bipartite case, it was proven to be NP-hard [Gur03] (Gurvits, Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03, 2003). However, as we have already seen in Sect.  2.1.2, there exist several criteria which give sufficient conditions to certify that a state is entangled, of which the most celebrated one is the Positive under Partial Transposition (PPT) criterion. Nevertheless, the characterization of states which are both PPT and entangled remains elusive.

Keywords

Entangle State Symmetric Space Separable State Schmidt Number Edge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Aug+10]
    R. Augusiak, J. Grabowski, M. Kuś, M. Lewenstein, Searching for extremal PPT entangled states, in Optics Communications, 283(5), 805–813 (2010). Quo vadis Quantum Optics? ISSN: 0030-4018, doi: 10.1016/j.optcom.2009.10.050, (see pp. 53, 75, 76, 78)
  2. [Aug+12]
    R. Augusiak, J. Tura, J. Samsonowicz, M. Lewenstein, Entangled symmetric states of N qubits with all positive partial transpositions. Phys. Rev. A, 86(4), 042316 (2012). doi: 10.1103/PhysRevA.86.042316, (see pp. 54, 78, 79, 94)
  3. [CK06a]
    D. Chruściński, A. Kossakowski, Multipartite invariant states. I. Unitary symmetry. Phys. Rev. A, 73(6), 062314 (2006). doi: 10.1103/PhysRevA.73.062314, (see p. 53)
  4. [CK06b]
    D. Chruściński, A. Kossakowski, Multipartite invariant states. II. Orthogonal symmetry. Phys. Rev. A, 73(6), 062315 (2006). doi: 10.1103/PhysRevA.73.062315, (see p. 53)
  5. [CMW08]
    T. Cubitt, A. Montanaro, A. Winter, On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys. 49(2), 022107 (2008). doi: 10.1063/1.2862998, (see p. 68)
  6. [Eck+02]
    K. Eckert, J. Schliemann, D. Bruss, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88-127 (2002). ISSN: 0003-4916, doi: 10.1006/aphy.2002.6268, (see pp. 55, 58, 67, 94)
  7. [EW01]
    T. Eggeling, R.F. Werner, Separability properties of tripartite states with \(U \bigotimes U \bigotimes U\) symmetry. Phys. Rev. A, 63(4), 042111 (2001). doi: 10.1103/PhysRevA.63.042111, (see p. 53)
  8. [Gur03]
    L. Gurvits, Classical deterministic complexity of edmonds’ problem and quantum entanglement, in Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03 (ACM, San Diego, CA, USA, 2003), pp. 10–19. ISBN: 1-58113-674-9, doi: 10.1145/780542.780545, (see pp. 53, 74)
  9. [HHH96]
    M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223(1–2), 1–8 (1996). ISSN: 0375-9601, doi: 10.1016/S0375-9601(96)00706-2, (see p. 67)
  10. [Hor+00]
    P. Horodecki, M. Lewenstein, G. Vidal, I. Cirac, Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A, 62(3), 032310 (2000). doi: 10.1103/PhysRevA.62.032310, (see pp. 59, 93)
  11. [Hor97]
    P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232(5), 333–339 (1997). ISSN: 0375-9601, doi: 10.1016/S0375-9601(97)00416-7, (see pp. 62, 84-87)
  12. [KL01]
    S. Karnas, M. Lewenstein, Separability and entanglement in \({\mathbb{C}}^2 \bigotimes {\mathbb{C}}^2 \bigotimes {\mathbb{C}}^n\) composite quantum systems. Phys. Rev. A 64(4), 042313 (2001). doi: 10.1103/PhysRevA.64.042313, (see p. 62)
  13. [Kra+00]
    B. Kraus, J.I. Cirac, S. Karnas, M. Lewenstein, Separability in \(2 \times N\) composite quantum systems. Phys. Rev. A 61(6), 062302 (2000). doi: 10.1103/PhysRevA.61.062302, (see pp. 58–60, 63, 64, 72)
  14. [Lew+00]
    M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses. Phys. Rev. A 62(5), 052310 (2000). doi: 10.1103/PhysRevA.62.052310, (see p. 62)
  15. [LMO07]
    J.M. Leinaas, J. Myrheim, E. Ovrum, Extreme points of the set of density matrices with positive partial transpose. Phys. Rev. A 76(3), 034304 (2007). doi: 10.1103/PhysRevA.76.034304, (see pp. 53, 75, 78)
  16. [LMS10]
    J.M. Leinaas, J. Myrheim, P. Øyvind, Sollid numerical studies of entangled positive-partial-transpose states in composite quantum systems. Phys. Rev. A 81(6), 062329 (2010). doi: 10.1103/PhysRevA.81.062329, (see p. 82)
  17. [LS98]
    M. Lewenstein, A. Sanpera, Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80(11), 2261–2264 (1998). doi: 10.1103/PhysRevLett.80.2261, (see p. 62)
  18. [SKL07]
    J. Samsonowicz, M. Kuś, M. Lewenstein, Separability, entanglement, and full families of commuting normal matrices. Phys. Rev. A 76(2), 022314 (2007). doi: 10.1103/PhysRevA.76.022314, (see pp. 63, 72, 73, 90)
  19. [Stø63]
    E. Størmer, Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963). ISSN: 0001-5962, doi: 10.1007/BF02391860, (see p. 67)
  20. [TG09]
    G. Tóth, O. Gühne, Entanglement and permutational symmetry. Phys. Rev. Lett. 102(17), 170503 (2009). doi: 10.1103/PhysRevLett.102.170503, (see p. 67)
  21. [Tur+12]
    J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, M. Lewenstein, Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A 85(6), 060302 (2012). doi: 10.1103/PhysRevA.85.060302, Published as a Rapid Communication (see pp. 53, 54, 67, 78)
  22. [VB12]
    T. Vértesi, N. Brunner, Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108(3), 030403 (2012). doi: 10.1103/PhysRevLett.108.030403, (see p. 53)
  23. [VW01]
    K.G.H. Vollbrecht, R.F. Werner, Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001). doi: 10.1103/PhysRevA.64.062307, (see p. 53)
  24. [Wor76]
    S.L. Woronowicz, Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976). ISSN: 0034-4877. doi: 10.1016/0034-4877(76)90038-0, (see p. 67)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordi Tura i Brugués
    • 1
  1. 1.ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and TechnologyCastelldefels (Barcelona)Spain

Personalised recommendations