Advertisement

Introduction

  • Jordi Tura i Brugués
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The rules governing the behavior of very small-scale physics have no classical analogy. Below the nanoscale, molecules, atoms and subatomic particles happen to be very accurately described by Quantum Theory (QT). However, the anti-intuitive nature of QT made it hard to be accepted by the scientific community, since its very genesis, for accepting QT implies the acceptance that Nature behaves as something that we can not make any parallelism with.

Keywords

Quantum Theory Entangle State Bell Inequality Multipartite Entanglement Nonlocal Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AGR82]
    A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of Bell’s Inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982). doi: 10.1103/PhysRevLett.49.91 ADSCrossRefGoogle Scholar
  2. [Aol+12]
    L. Aolita, R. Gallego, A. Cabello, A. Acín, Fully nonlocal, monogamous, and random genuinely multipartite quantum correlations. Phys. Rev. Lett. 108(10), 100401 (2012). doi: 10.1103/PhysRevLett.108.100401 ADSCrossRefGoogle Scholar
  3. [Aug+12]
    R. Augusiak, J. Tura, J. Samsonowicz, M. Lewenstein, Entangled symmetric states of \(N\) qubits with all positive partial transpositions. Phys. Rev. A 86(4), 042316 (2012). doi: 10.1103/PhysRevA.86.042316 ADSCrossRefGoogle Scholar
  4. [Aug+14]
    R. Augusiak, M. Demianowicz, M. Pawłowski, J. Tura, A. Acín, Elemental and tight monogamy relations in nonsignaling theories. Phys. Rev. A 90(5), 052323 (2014). doi: 10.1103/PhysRevA.90.052323 ADSCrossRefGoogle Scholar
  5. [Aug+15]
    R. Augusiak, M. Demianowicz, J. Tura, A. Acín, Entanglement and nonlocality are inequivalent for any number of parties. Phys. Rev. Lett. 115(3), 030404 (2015). doi: 10.1103/PhysRevLett.115.030404 ADSCrossRefGoogle Scholar
  6. [Bar02]
    J. Barrett, Nonsequential positive - operator - valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65(4), 042302 (2002). doi: 10.1103/PhysRevA.65.042302 ADSMathSciNetCrossRefGoogle Scholar
  7. [BBC84]
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of International Conference on Computers, Systems and Signal Processing, vol. 175 150 (1984), pp. 175–179Google Scholar
  8. [Bel64]
    J.S. Bell, On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  9. [Ben+93]
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi: 10.1103/PhysRevLett.70.1895 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [BKP06]
    J. Barrett, A. Kent, S. Pironio, Maximally nonlocal and monogamous quantum correlations. Phys. Rev. Lett. 97(17), 170409 (2006). doi: 10.1103/PhysRevLett.97.170409 ADSCrossRefGoogle Scholar
  11. [Bru+14]
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014). doi: 10.1103/RevModPhys.86.419 ADSCrossRefGoogle Scholar
  12. [CKW00]
    V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000). doi: 10.1103/PhysRevA.61.052306 ADSCrossRefGoogle Scholar
  13. [CR12]
    C. Roger, R. Renato, Free randomness can be amplified. Nat. Phys. 8(6), 450–453 (2012). doi: 10.1038/nphys2300. ISSN: 1745-2473CrossRefGoogle Scholar
  14. [Dic54]
    R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954). doi: 10.1103/PhysRev.93.99 ADSCrossRefzbMATHGoogle Scholar
  15. [Eck+02]
    K. Eckert, J. Schliemann, D. Bruß, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002). doi: 10.1006/aphy.2002.6268. ISSN: 0003-4916ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [Eke91]
    A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). doi: 10.1103/PhysRevLett.67.661 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [EPR35]
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi: 10.1103/PhysRev.47.777 ADSCrossRefzbMATHGoogle Scholar
  18. [Gal+10]
    R. Gallego, N. Brunner, C. Hadley, A. Acín, Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010). doi: 10.1103/PhysRevLett.105.230501 ADSCrossRefGoogle Scholar
  19. [Gis91]
    N. Gisin, Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991). doi: 10.1016/0375-9601(91)90805-I. ISSN: 0375-9601ADSMathSciNetCrossRefGoogle Scholar
  20. [HHH96]
    M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). doi: 10.1016/S0375-9601(96)00706-2. ISSN: 0375-9601ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [HHH98]
    M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). doi: 10.1103/PhysRevLett.80.5239 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [Hor+09]
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009). doi: 10.1103/RevModPhys.81.865 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [Hor97]
    P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997). doi: 10.1016/S0375-9601(97)00416-7. ISSN: 0375-9601ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [Lk14]
    B. Lücke, C. Klempt, Private communication (2014)Google Scholar
  25. [LMG65]
    H.J. Lipkin, N. Meshkov, A.J. Glick, Validity of manybody approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nuclear Phys. 62(2), 188–198 (1965). doi: 10.1016/0029-5582(65)90862-X. ISSN: 0029-5582ADSMathSciNetCrossRefGoogle Scholar
  26. [LMO07]
    J.M. Leinaas, J. Myrheim, E. Ovrum, Extreme points of the set of density matrices with positive partial transpose. Phys. Rev. A 76(3), 034304 (2007). doi: 10.1103/PhysRevA.76.034304 ADSCrossRefGoogle Scholar
  27. [NC00]
    M.A. Nielsen, I.L. Chuang, Quantum computation and quantum information (2000). doi: 10.1080/00107514.2011.587535
  28. [Per96]
    A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996). doi: 10.1103/PhysRevLett.77.1413 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [Pir+13]
    S. Pironio, L.I. Masanes, A. Leverrier, A. Acín, Security of device-independent quantum key distribution in the bounded-quantum-storage model. Phys. Rev. X 3(3), 031007 (2013). doi: 10.1103/PhysRevX.3.031007 Google Scholar
  30. [PR92]
    S. Popescu, D. Rohrlich, Generic quantum nonlocality. Phys. Lett. A 166(5–6), 293–297 (1992). doi: 10.1016/0375-9601(92)90711-T. ISSN: 0375-9601ADSMathSciNetCrossRefGoogle Scholar
  31. [Sch+16]
    R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, N. Sangouard, Bell correlations in a Bose–Einstein condensate. Science 352(6284), 441–444 (2016). doi: 10.1126/science.aad8665. ISSN: 0036-8075ADSMathSciNetCrossRefGoogle Scholar
  32. [Sho94]
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings (1994), pp. 124–134. doi: 10.1109/SFCS.1994.365700
  33. [Sto63]
    E. Størmer, Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963). doi: 10.1007/BF02391860. ISSN: 0001-5962MathSciNetCrossRefzbMATHGoogle Scholar
  34. [TA06]
    G. Tóth, A. Acín, genuine tripartite entangled states with a local hidden-variable model. Phys. Rev. A 74(3), 030306 (2006). doi: 10.1103/PhysRevA.74.030306 ADSCrossRefGoogle Scholar
  35. [TG09]
    G. Tóth, O. Gühne, Entanglement and permutational symmetry. Phys. Rev. Lett. 102(17), 170503 (2009). doi: 10.1103/PhysRevLett.102.170503 ADSMathSciNetCrossRefGoogle Scholar
  36. [Tur+12]
    J. Tura, R. Augusiak, P. Hyllus, M. Kuś, J. Samsonowicz, M. Lewenstein, Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A85(6):060302 (2012). doi: 10.1103/PhysRevA.85.060302. Published as a Rapid Communication
  37. [Tur+14a]
    J. Tura, R. Augusiak, A.B. Sainz, T. Vértesi, M. Lewenstein, A. Acín, Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014). doi: 10.1126/science.1247715 ADSCrossRefzbMATHGoogle Scholar
  38. [Tur+14b]
    J. Tura, A.B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, R. Augusiak, Translationally invariant multipartite Bell inequalities involving only two-body correlators. J. Phys. A Math. Theor. 47(42):424024 (2014). doi: 10.1088/1751-8113/47/42/424024. Part of the special issue 50 years of Bell’s Theorem (see pp. 8, 10)
  39. [Tur+15a]
    J. Tura, A.B. Sainz, T. Graß, R. Augusiak, A. Acín, M. Lewenstein, Entanglement and nonlocality in many-body systems: a primer, in Proceedings of the International School of Physics “Enrico Fermi”, vol. 191(1) (2015), pp. 505-535. doi: 10.3254/978-1-61499-694-1-505. Course 191 - Quantum Matter at Ultralow Temperatures (see pp. 9, 10)
  40. [Tur+15b]
    J. Tura, R. Augusiak, A.B. Sainz, B. Lücke, C. Klempt, M. Lewenstein, A. Acín, Nonlocality in many-body quantum systems detected with two-body correlators. Ann. Phys. 362, 370–423 (2015), http://dx.doi.org/10.1016/j.aop.2015.07.021. ISSN: 0003-4916
  41. [Wer89]
    R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi: 10.1103/PhysRevA.40.4277 ADSCrossRefGoogle Scholar
  42. [Wor76]
    S.L. Woronowicz, Positive maps of low dimensional matrix algebras. Reports Math. Phys. 10(2), 165–183 (1976). doi: 10.1016/0034-4877(76)90038-0. ISSN: 0034-4877ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [Lyd+10]
    L. Lars, W. Carlos, W. Christoffer, E. Dominique, S. Johannes, M. Vadim, hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon 4(10), 686–689 (2010). doi: 10.1038/nphoton.2010.214. ISSN: 1749-4885ADSCrossRefGoogle Scholar
  44. [Ost+02]
    A. Osterloh, A. Luigi, G. Falci, F. Rosario, Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002). doi: 10.1038/416608a. ISSN: 0028-0836ADSCrossRefGoogle Scholar
  45. [Pir+10]
    S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning, C. Monroe, Random numbers certified by Bell’s theorem. Nature 464(7291), 1021–1024 (2010). doi: 10.1038/nature09008. ISSN: 0028-0836ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jordi Tura i Brugués
    • 1
  1. 1.ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and TechnologyCastelldefels (Barcelona)Spain

Personalised recommendations