Skip to main content

Impact of Seizures on Outcome

  • Chapter
  • First Online:
  • 1736 Accesses

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Clinical seizures occur frequently in the critically ill patient. In addition, the increasing application and recent widespread use of continuous electroencephalogram monitoring have revealed that electrographic seizures are even more frequent than clinical seizures in the critically ill patient. There are limited data on how electrographic seizures affect outcome and whether and how aggressively to treat electrographic seizures in the critically ill patient. This review aims to address this gap in knowledge by summarizing the impact of electrographic seizures on outcome and providing a general guide to treat electrographic seizures in the critically ill patient. Current literature suggests that electrographic seizures likely worsen outcome independent of the underlying etiology. This association is stronger in subarachnoid hemorrhage and in traumatic brain injury and warrants a proactive treatment. In contrast, the presence of electrographic seizures in stroke or tumors is unlikely to modify outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    Article  CAS  PubMed  Google Scholar 

  2. Abend NS, Arndt DH, Carpenter JL, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013;81:383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Glass HC, Glidden D, Jeremy RJ, Barkovich AJ, Ferriero DM, Miller SP. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J Pediatr. 2009;155:318–23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lambrechtsen FA, Buchhalter JR. Aborted and refractory status epilepticus in children: a comparative analysis. Epilepsia. 2008;49:615–25.

    Article  PubMed  Google Scholar 

  5. McBride MC, Laroia N, Guillet R. Electrographic seizures in neonates correlate with poor neurodevelopmental outcome. Neurology. 2000;55:506–13.

    Article  CAS  PubMed  Google Scholar 

  6. Pisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology. 2007;69:2177–85.

    Article  PubMed  Google Scholar 

  7. Gwer S, Idro R, Fegan G, et al. Continuous EEG monitoring in Kenyan children with non-traumatic coma. Arch Dis Child. 2012;97:343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Payne ET, Zhao XY, Frndova H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014;137:1429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Topjian AA, Gutierrez-Colina AM, Sanchez SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med. 2013;41:215–23.

    Article  PubMed  Google Scholar 

  10. Claassen J, Albers D, Schmidt JM, et al. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014;75:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foreman B, Claassen J, Abou Khaled K, et al. Generalized periodic discharges in the critically ill: a case-control study of 200 patients. Neurology. 2012;79:1951–60.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.

    Article  PubMed  Google Scholar 

  13. Ney JP, van der Goes DN, Nuwer MR, Nelson L, Eccher MA. Continuous and routine EEG in intensive care: utilization and outcomes, United States 2005–2009. Neurology. 2013;81:2002–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sanchez SM, Carpenter J, Chapman KE, et al. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol. 2013;30:156–60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gavvala J, Abend N, LaRoche S, et al. Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia. 2014;55:1864–71.

    Article  PubMed  Google Scholar 

  16. Gutierrez-Colina AM, Topjian AA, Dlugos DJ, Abend NS. Electroencephalogram monitoring in critically ill children: indications and strategies. Pediatr Neurol. 2012;46:158–61.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang A, Arndt DH, Berg RA, et al. Development and validation of a seizure prediction model in critically ill children. Seizure. 2015;25:104–11.

    Article  PubMed  Google Scholar 

  18. Abend NS, Topjian AA, Williams S. How much does it cost to identify a critically ill child experiencing electrographic seizures? J Clin Neurophysiol. 2015;32:257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47:83–9.

    Article  CAS  PubMed  Google Scholar 

  20. Abend NS, Topjian AA, Williams S. Could EEG monitoring in critically ill children be a cost-effective neuroprotective strategy? J Clin Neurophysiol. 2015;32:486–94.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abend NS, Wusthoff CJ, Goldberg EM, Dlugos DJ. Electrographic seizures and status epilepticus in critically ill children and neonates with encephalopathy. Lancet Neurol. 2013;12:1170–9.

    Article  PubMed  Google Scholar 

  22. Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, Boylan GB. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia. 2012;53:549–57.

    Article  PubMed  Google Scholar 

  23. Tsuchida TN, Wusthoff CJ, Shellhaas RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013;30:161–73.

    Article  PubMed  Google Scholar 

  24. Alldredge BK, Gelb AM, Isaacs SM, et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med. 2001;345:631–7.

    Article  CAS  PubMed  Google Scholar 

  25. Tobochnik S, Gutierrez C, Jacobson MP. Characteristics and acute outcomes of ICU patients with initial presentation of seizure. Seizure. 2015;26:94–7.

    Article  PubMed  Google Scholar 

  26. Abend NS, Dlugos DJ, Hahn CD, Hirsch LJ, Herman ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12:382–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. O'Connor KL, Westover MB, Phillips MT, et al. High risk for seizures following subarachnoid hemorrhage regardless of referral bias. Neurocrit Care. 2014;21:476–82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hosokawa K, Gaspard N, Su F, Oddo M, Vincent JL, Taccone FS. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Crit Care. 2014;18:674.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Polito A, Eischwald F, Maho AL, et al. Pattern of brain injury in the acute setting of human septic shock. Crit Care. 2013;17:R204.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kurtz P, Gaspard N, Wahl AS, et al. Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med. 2014;40:228–34.

    Article  PubMed  Google Scholar 

  31. Vespa PM, Nuwer MR, Nenov V, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91:750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arndt DH, Lerner JT, Matsumoto JH, et al. Subclinical early posttraumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54:1780–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O'Neill BR, Handler MH, Tong S, Chapman KE. Incidence of seizures on continuous EEG monitoring following traumatic brain injury in children. J Neurosurg Pediatr. 2015;16:167–76.

    Article  PubMed  Google Scholar 

  34. Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cantu D, Walker K, Andresen L, et al. Traumatic brain injury increases cortical glutamate network activity by compromising gabaergic control. Cereb Cortex. 2015;25:2306–20.

    Article  PubMed  Google Scholar 

  36. Vespa P, Prins M, Ronne-Engstrom E, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.

    Article  CAS  PubMed  Google Scholar 

  37. Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vespa P, Tubi M, Claassen J, et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol. 2016;79:579–90.

    Google Scholar 

  39. Thompson K, Pohlmann-Eden B, Campbell LA, Abel H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev. 2015;8:CD009900.

    Google Scholar 

  40. De Marchis GM, Pugin D, Meyers E, et al. Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology. 2016;86:253–60.

    Google Scholar 

  41. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A. 2008;105:17151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech. 2012;5:823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Claassen J, Hirsch LJ, Frontera JA, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12.

    Article  PubMed  Google Scholar 

  44. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    Article  PubMed  Google Scholar 

  45. Szaflarski JP, Rackley AY, Kleindorfer DO, et al. Incidence of seizures in the acute phase of stroke: a population-based study. Epilepsia. 2008;49:974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vespa PM, O'Phelan K, Shah M, et al. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    Article  CAS  PubMed  Google Scholar 

  47. Passero S, Rocchi R, Rossi S, Ulivelli M, Vatti G. Seizures after spontaneous supratentorial intracerebral hemorrhage. Epilepsia. 2002;43:1175–80.

    Article  PubMed  Google Scholar 

  48. Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.

    Article  CAS  PubMed  Google Scholar 

  49. Leira R, Davalos A, Silva Y, et al. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology. 2004;63:461–7.

    Article  CAS  PubMed  Google Scholar 

  50. Bladin CF, Alexandrov AV, Bellavance A, et al. Seizures after stroke: a prospective multicenter study. Arch Neurol. 2000;57:1617–22.

    Article  CAS  PubMed  Google Scholar 

  51. Camilo O, Goldstein LB. Seizures and epilepsy after ischemic stroke. Stroke. 2004;35:1769–75.

    Article  PubMed  Google Scholar 

  52. Garrett MC, Komotar RJ, Starke RM, Merkow MB, Otten ML, Connolly ES. Predictors of seizure onset after intracerebral hemorrhage and the role of long-term antiepileptic therapy. J Crit Care. 2009;24:335–9.

    Article  PubMed  Google Scholar 

  53. Messe SR, Sansing LH, Cucchiara BL, et al. Prophylactic antiepileptic drug use is associated with poor outcome following ICH. Neurocrit Care. 2009;11:38–44.

    Article  CAS  PubMed  Google Scholar 

  54. Waterhouse EJ, Vaughan JK, Barnes TY, et al. Synergistic effect of status epilepticus and ischemic brain injury on mortality. Epilepsy Res. 1998;29:175–83.

    Article  CAS  PubMed  Google Scholar 

  55. Goldstone AB, Bronster DJ, Anyanwu AC, et al. Predictors and outcomes of seizures after cardiac surgery: a multivariable analysis of 2,578 patients. Ann Thorac Surg. 2011;91:514–8.

    Article  PubMed  Google Scholar 

  56. Gofton TE, Chu MW, Norton L, et al. A prospective observational study of seizures after cardiac surgery using continuous EEG monitoring. Neurocrit Care. 2014;21:220–7.

    Article  PubMed  Google Scholar 

  57. Young GB, Sharpe MD, Savard M, Al Thenayan E, Norton L, Davies-Schinkel C. Seizure detection with a commercially available bedside EEG monitor and the subhairline montage. Neurocrit Care. 2009;11:411–6.

    Article  PubMed  Google Scholar 

  58. Naim MY, Gaynor JW, Chen J, et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J Thorac Cardiovasc Surg. 2015;150:169–78. discussion 178-180

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gaynor JW, Jarvik GP, Bernbaum J, et al. The relationship of postoperative electrographic seizures to neurodevelopmental outcome at 1 year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2006;131:181–9.

    Article  PubMed  Google Scholar 

  60. Marcuse LV, Bronster DJ, Fields M, Polanco A, Yu T, Chikwe J. Evaluating the obtunded patient after cardiac surgery: the role of continuous electroencephalography. J Crit Care. 2014;29:316.e1–5.

    Article  Google Scholar 

  61. Chen J, Zimmerman RA, Jarvik GP, et al. Perioperative stroke in infants undergoing open heart operations for congenital heart disease. Ann Thorac Surg. 2009;88:823–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Domi T, Edgell DS, McCrindle BW, et al. Frequency, predictors, and neurologic outcomes of vaso-occlusive strokes associated with cardiac surgery in children. Pediatrics. 2008;122:1292–8.

    Article  PubMed  Google Scholar 

  63. Rittenberger JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16:114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Abend NS, Topjian A, Ichord R, et al. Electroencephalographic monitoring during hypothermia after pediatric cardiac arrest. Neurology. 2009;72:1931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Legriel S, Hilly-Ginoux J, Resche-Rigon M, et al. Prognostic value of electrographic postanoxic status epilepticus in comatose cardiac-arrest survivors in the therapeutic hypothermia era. Resuscitation. 2013;84:343–50.

    Article  PubMed  Google Scholar 

  66. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40:2867–75.

    Article  PubMed  Google Scholar 

  67. Friberg H, Westhall E, Rosen I, Rundgren M, Nielsen N, Cronberg T. Clinical review: continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest. Crit Care. 2013;17:233.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rundgren M, Westhall E, Cronberg T, Rosen I, Friberg H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38:1838–44.

    Article  PubMed  Google Scholar 

  69. Accardo J, De Lisi D, Lazzerini P, Primavera A. Good functional outcome after prolonged postanoxic comatose myoclonic status epilepticus in a patient who had undergone bone marrow transplantation. Case Rep Neurol Med. 2013;2013:872127.

    PubMed  PubMed Central  Google Scholar 

  70. Hovland A, Nielsen EW, Kluver J, Salvesen R. EEG should be performed during induced hypothermia. Resuscitation. 2006;68:143–6.

    Article  PubMed  Google Scholar 

  71. Kaplan PW, Morales Y. Re: Status epilepticus: an independent outcome predictor after cerebral anoxia. Neurology. 2008;70:1295. author reply 1295–1296

    Article  PubMed  Google Scholar 

  72. Lucas JM, Cocchi MN, Salciccioli J, et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation. 2012;83:265–9.

    Article  PubMed  Google Scholar 

  73. Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72:744–9.

    Article  PubMed  Google Scholar 

  74. Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67:301–7.

    PubMed  Google Scholar 

  75. Ruijter BJ, van Putten MJ, Hofmeijer J. Generalized epileptiform discharges in postanoxic encephalopathy: quantitative characterization in relation to outcome. Epilepsia. 2015;56:1845–54.

    Article  PubMed  Google Scholar 

  76. Seder DB, Sunde K, Rubertsson S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43:965–72.

    Article  PubMed  Google Scholar 

  77. Sunde K, Dunlop O, Rostrup M, Sandberg M, Sjoholm H, Jacobsen D. Determination of prognosis after cardiac arrest may be more difficult after introduction of therapeutic hypothermia. Resuscitation. 2006;69:29–32.

    Article  PubMed  Google Scholar 

  78. Westhall E, Rundgren M, Lilja G, Friberg H, Cronberg T. Postanoxic status epilepticus can be identified and treatment guided successfully by continuous electroencephalography. Ther Hypothermia Temp Manag. 2013;3:84–7.

    Article  PubMed  Google Scholar 

  79. Ko SB, Ortega-Gutierrez S, Choi HA, et al. Status epilepticus-induced hyperemia and brain tissue hypoxia after cardiac arrest. Arch Neurol. 2011;68:1323–6.

    Article  PubMed  Google Scholar 

  80. Lote K, Stenwig AE, Skullerud K, Hirschberg H. Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer. 1998;34:98–102.

    Article  CAS  PubMed  Google Scholar 

  81. Chang EF, Potts MB, Keles GE, et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg. 2008;108:227–35.

    Article  PubMed  Google Scholar 

  82. Spindler M, Jacks LM, Chen X, Panageas K, DeAngelis LM, Avila EK. Spectrum of nonconvulsive status epilepticus in patients with cancer. J Clin Neurophysiol. 2013;30:339–43.

    Article  PubMed  Google Scholar 

  83. Abend NS, Gutierrez-Colina AM, Topjian AA, et al. Nonconvulsive seizures are common in critically ill children. Neurology. 2011;76:1071–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hosain SA, Solomon GE, Kobylarz EJ. Electroencephalographic patterns in unresponsive pediatric patients. Pediatr Neurol. 2005;32:162–5.

    Article  PubMed  Google Scholar 

  85. Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63:1750–5.

    Article  PubMed  Google Scholar 

  86. Saengpattrachai M, Sharma R, Hunjan A, et al. Nonconvulsive seizures in the pediatric intensive care unit: etiology, EEG, and brain imaging findings. Epilepsia. 2006;47:1510–8.

    Article  PubMed  Google Scholar 

  87. Shahwan A, Bailey C, Shekerdemian L, Harvey AS. The prevalence of seizures in comatose children in the pediatric intensive care unit: a prospective video-EEG study. Epilepsia. 2010;51:1198–204.

    Article  PubMed  Google Scholar 

  88. Kirkham FJ, Wade AM, McElduff F, et al. Seizures in 204 comatose children: incidence and outcome. Intensive Care Med. 2012;38:853–62.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Glass HC, Nash KB, Bonifacio SL, et al. Seizures and magnetic resonance imaging-detected brain injury in newborns cooled for hypoxic-ischemic encephalopathy. J Pediatr. 2011;159:731–5. e731

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wyatt JS, Gluckman PD, Liu PY, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics. 2007;119:912–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Loddenkemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sánchez Fernández, I., Loddenkemper, T. (2017). Impact of Seizures on Outcome. In: Varelas, P., Claassen, J. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49557-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49557-6_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-49555-2

  • Online ISBN: 978-3-319-49557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics