Skip to main content

Microphone Array for Non-contact Monitoring of Rolling Bearings

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 681))

  • 524 Accesses

Abstract

A non-contact approach for detection of lubrication loss in ball bearings is described in the paper. An acoustic camera consisting of array of microphones and camera is used for measuring bearing noise. It is found that the lubrication loss increases the obtained sound pressure from 3 to 33 dB, in the frequency range 10 Hz–20 kHz. Automatic detection of the lubrication loss may be done by a thresholding technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, H., Germen, E.: Identification of acoustic spectra for fault detection in induction motors. In: AFRICON 2013, pp. 1–5. IEEE. doi:10.1109/AFRCON.2013.6757650

  2. Barton, D.K., Leonov, S.A. (eds.): Radar Technology Encyclopedia (Electronic Edition). Artech House Inc., Boston (1998). ISBN 0-89006-893-3

    Google Scholar 

  3. Bell, K.L., Steinberg, Y., Ephraim, Y., Van Trees, H.L.: Extended Ziv-Zakai lower bound for vector parameter estimation. IEEE Trans. Inf. Theory 43(2), 624–637 (1997). doi:10.1109/18.556118

    Article  MATH  Google Scholar 

  4. Christensen, J.J., Hald, J.: Beamforming. Brüel & Kjær Tech. Rev. 1, 1–48 (2004)

    Google Scholar 

  5. Chyrka, I.: Fast direction-of-arrival estimation for single source. In: International Conference on Telecommunications and Remote Sensing (ICTRS-2015), pp. 54–58. SCITEPRESS, Bulgaria (2015). ISBN 978-989-758-152-6

    Google Scholar 

  6. Doukovska, L.A.: Adaptive Hough detector threshold analysis in presence of randomly arriving impulse interference. In: 4th Microwave and Radar Week MRW-2010—11th International Radar Symposium, IRS 2010—Conference Proceedings, pp. 142–145. IEEE (2010). ISSN 2155-5754. ISBN 978-995569018-4

    Google Scholar 

  7. Graney, B.P., Starry, K.: Rolling element bearing analysis. Mater. Eval. 70(1), 78–85 (2012)

    Google Scholar 

  8. Koprinkova-Hristova, P., Chyrka, Iu., Kudriashov, V., Alexiev, K., Ivanov, V., Nedyalkov, P.: Smart feature extraction from acoustic camera multi-sensor measurements (presented at The International Conference ADVANCED COMPUTING FOR INNOVATION ACOMIN’2015, to appear in). In: Kacprzyk, J. (ed.) Innovative Approaches and Solutions in Advanced Intelligent Systems. SCI. Springer, Heidelberg (2016)

    Google Scholar 

  9. Liu, T.I., Singonahalli, J.H., Iyer, N.R.: Detection of roller bearing defects using expert system and fuzzy logic. Mech. Syst. Signal Process. 10(5), 595–614 (1996). doi:10.1006/mssp.1996.0041

    Article  Google Scholar 

  10. Lukin, K., Kudriashov, V.V., Vyplavin, P., Palamarchuk, V.: Coherent imaging in the range-azimuth plane using a bistatic radiometer based on antennas with beam synthesizing. Aerosp. Electr. Syst. Mag. 29(7), 16–22 (2014). doi:10.1109/MAES.2014.130142

    Article  Google Scholar 

  11. Morhain, A., Mba, D.: Bearing defect diagnosis and acoustic emission. Proc Inst Mech Eng Part J: J Eng Tribol 217(4):257–272 (2003). ISSN 1350-6501

    Google Scholar 

  12. Oh, H., Azarian, M.H., Pecht, M.: Estimation of fan bearing degradation using acoustic emission analysis and Mahalanobis distance. In: Applied Systems Health Management Conference 2011: Enabling Sustainable Systems. MFPT 2011, pp. 1–12. Virginia Beach VA, USA (2011)

    Google Scholar 

  13. Pinner, T., Obando, H.S., Moeser, G., Burger, W.: Monitoring lathe tool’s wear condition by acoustic emission technology. In: Third International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO 2013), pp. 183–193. Springer, Berlin (2014) doi:10.1007/978-3-642-39348-8_15. ISSN 2195-4356

  14. Seidman, L.P.: Performance limitations and error for parameter estimation. Proc. IEEE 58(5), 644–652 (1970). doi:10.1109/PROC.1970.7720

    Article  Google Scholar 

  15. Sikorski, W. (ed.): Acoustic Emission—Research and Applications. InTech, Rijeka (2013)

    Google Scholar 

  16. Tandon, N., Choudhury, A.: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 32(8), 469–480 (1999). doi:10.1016/S0301-679X(99)00077-8

    Article  Google Scholar 

  17. Weinstein, E., Weiss, A.J.: Fundamental limitations in passive time-delay estimation-part I: narrow-band systems. IEEE Trans. Acoust. Speech Signal Process. 31(2), 472–486 (1983). doi:10.1109/TASSP.1983.1164061

    Article  Google Scholar 

  18. Weinstein, E., Weiss, A.J.: Fundamental limitations in passive time-delay estimation-part II: wide-band systems. IEEE Trans. Acoust. Speech Signal Process. 32(5), 1064–1078 (1984). doi:10.1109/TASSP.1984.1164429

    Article  Google Scholar 

  19. Yoshioka, T., Fujiwara, T.: New acoustic emission source locating system for the study of rolling contact fatigue. Wear 81(1), 183–186 (1982). doi:10.1016/0043-1648(82)90314-3

    Article  Google Scholar 

  20. Yoshioka, T., Fujiwara, T.: Application of acoustic emission technique to detection of rolling bearing failure. Am. Soc. Mech. Eng. 14, 55–76 (1984)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the project AComIn, grant 316087, funded by the FP7 Capacity Program (Research Potential of Convergence Regions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Kudriashov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kudriashov, V., Ivanov, V., Alexiev, K., Koprinkova-Hristova, P. (2017). Microphone Array for Non-contact Monitoring of Rolling Bearings. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol 681. Springer, Cham. https://doi.org/10.1007/978-3-319-49544-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49544-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49543-9

  • Online ISBN: 978-3-319-49544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics