New Bounds for Probability of Error of Coded and Uncoded TQAM in AWGN Channel

  • Hristo Kostadinov
  • Liliya Kraleva
  • Nikolai L. Manev
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 681)

Abstract

We investigate the performance of coded modulation scheme based on the application of integer codes to triangular quadrature amplitude modulation (TQAM). An upper and a lower bounds for symbol error probability (SER) in the case of AWGN channel are derived. These bounds are so closed that it makes the calculation of the exact value of SER unnecessary in practice.

Notes

Acknowledgements

This work was partially supported by the National Science Fund of Bulgaria under Grant DFNI-I02/8.

References

  1. 1.
    Huber, K.: Codes over Gaussian integers. IEEE Trans. Inf. Theory 40(1), 207–216 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Haykin, S.: Digital Communications. Wiley, NY (1988)Google Scholar
  3. 3.
    Kostadinov, H., Morita, H., Manev, N.: Integer codes correcting single errors of specific types \((\pm e_1, \pm e_2, \ldots , \pm e_s)\). IEICE Trans. Fundam. E86-A(7), 1843–1849 (2003)Google Scholar
  4. 4.
    Kostadinov, H., Morita, H., Manev, N.: Derivation on bit error probability of coded QAM using integer codes. IEICE Trans. Fundam. E87-A(12), 3397–3403 (2004)Google Scholar
  5. 5.
    Kostadinov, H., Morita, H., Iijima, N., Han Vinck, A.J., Manev, N.: Soft decoding of integer codes and their application to coded modulation. IEICE Trans Fundam. E39-A(7), 1363–1370 (2010)Google Scholar
  6. 6.
    Kostadinov, H., Morita, H., Manev, N.L.: On (–1,+1) error correctable integer codes. IEICE Trans. Fundam. E93-A(12), 2758–2761 (2010)Google Scholar
  7. 7.
    Park, S.-J.: Triangular quadrature amplitude modulation. IEEE Commun. Lett. 11(4), 292–294 (2007)CrossRefGoogle Scholar
  8. 8.
    Park, S.-J.: Performance analysis of triangular quadrature amplitude modulation in AWGN channel. IEEE Commun. Lett. 16, 765–768 (2012)CrossRefGoogle Scholar
  9. 9.
    Varshamov, R., Tenengolz, G.: One asymmetrical error-correctable codes. Automatika i Telematika 26(2), 288–292 (1965) (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hristo Kostadinov
    • 1
  • Liliya Kraleva
    • 1
  • Nikolai L. Manev
    • 2
  1. 1.IMI-BASSofiaBulgaria
  2. 2.USEA “Lyuben Karavelov” and Institute of Mathematics and InformaticsIMI-BASSofiaBulgaria

Personalised recommendations