Skip to main content

Structure, Stabilities, and Electronic Properties of Smart Ceramic Composites

  • Chapter
  • First Online:
Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications
  • 1229 Accesses

Abstract

Since the discovery of graphene sheet, researches on atomic-layered materials have been growing as new and active research fields in nanoscience and nanotechnology. Hexagonal boron-nitride (h-BN) monolayers have also received much interest due to the superior structural and mechanical properties similar to graphene. This chapter reviews the first-principles density functional study that reveals the strain-induced effects on atomic configurations and electronic properties of h-BN monolayers. The dispersion of the energy bands and the band gaps are examined under biaxial strains, and the band gaps are shown to be controllable by applying strains. The ionization energies and work functions for acceptor and donor states are also examined and they are shown to be tunable. The scanning tunneling microscopy (STM) images of carbon-doped h-BN monolayer are demonstrated for identifications of carbon impurities and the possibility to observe the carbon defects is exhibited. The relationship between the energy band structures and the applied strains is also shown to discuss the unique behaviors of the band gaps and the ionization energies induced by biaxial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al (2004) Science 306:666–669

    Article  Google Scholar 

  2. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602

    Article  Google Scholar 

  3. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Nature (London) 458:877–880

    Article  Google Scholar 

  4. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  Google Scholar 

  5. Pacile D, Meyer JC, Girit CÖ, Zettl A (2008) Appl Phys Lett 92:133107

    Article  Google Scholar 

  6. Jin C, Lin F, Suenaga K, Iijima S (2009) Phys Rev Lett 102:195505

    Article  Google Scholar 

  7. Dean CR, Young AF, Meric I, Lee C et al (2010) Nat Nanotechnol 5:722–726

    Article  Google Scholar 

  8. Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404–409

    Article  Google Scholar 

  9. Song L, Ci LJ, Lu H, Sorokin PB, Jin CH, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Nano Lett 10:3209–3215

    Article  Google Scholar 

  10. Blase X, Rubio A, Louie SG, Cohen ML (1995) Phys Rev B 51:6868

    Article  Google Scholar 

  11. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Science 317:932–934

    Article  Google Scholar 

  12. Watanabe K, Taniguchi T, Niiyama T, Miya K, Taniguchi M (2009) Nat Photonics 3:591–594

    Article  Google Scholar 

  13. Huang B, Cao XK, Jiang HX, Lin JY, Wei SH (2012) Phys Rev B 86:155202

    Article  Google Scholar 

  14. Berseneva N, Krasheninnikov AV, Nieminen RM (2011) Phys Rev Lett 107:035501

    Article  Google Scholar 

  15. Huang B, Lee H (2012) Phys Rev B 86:245406

    Article  Google Scholar 

  16. Berseneva N, Gulans A, Krasheninnikov AV, Nieminen RM (2013) Phys Rev B 87:035404

    Article  Google Scholar 

  17. Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M, Wu SY (2000) Nature (London) 405:769–772

    Article  Google Scholar 

  18. Heyd R, Charlier A, McRae E (1997) Phys Rev B 55:6820

    Article  Google Scholar 

  19. Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Phys Rev Lett 90:156401

    Article  Google Scholar 

  20. Fujimoto Y, Oshiyama A (2010) Phys Rev B 81:205309

    Article  Google Scholar 

  21. Choi SM, Jhi SH, Son YW (2010) Phys Rev B 81:081407

    Article  Google Scholar 

  22. Fujimoto Y, Koretsune T, Saito S (2014) J Ceram Soc Jpn 122:346–348

    Article  Google Scholar 

  23. Fujimoto Y, Saito S (2015) J Ceram Soc Jpn 123:576–578

    Article  Google Scholar 

  24. Lee ML, Fitzgerald EA, Bulsara MT, Currie MT, Lochtefeld A (2005) J Appl Phys 97:011101

    Article  Google Scholar 

  25. Michel J, Liu J, Kimerling LC (2010) Nat Photonics 4:527–534

    Article  Google Scholar 

  26. Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Ruhle M, Ruhler M, Carroll DL (2001) Nano Lett 1:457–460

    Article  Google Scholar 

  27. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758

    Article  Google Scholar 

  28. Fujimoto Y, Saito S (2011) Physica E 43:677–680

    Article  Google Scholar 

  29. Fujimoto Y, Saito S (2011) J Phys Conf Ser 302:012006

    Article  Google Scholar 

  30. Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutiérrez C, Chockalingam SP, Arguello CJ, Pálová L, Nordlund D, Hybertsen MS, Reichman DR, Heinz TF, Kim P, Pinczuk A, Flynn GW, Pasupathy AN (2011) Science 333:999–1003

    Article  Google Scholar 

  31. Susi T, Kotakoski J, Arenal R, Kurasch S, Jiang H, Skakalova V, Stephan O, Krasheninnikov AV, Kauppinen EI, Kaiser U, Meyer JC (2012) ACS Nano 6:8837–8846

    Article  Google Scholar 

  32. Zhao L, Levendorf M, Goncher S, Schiros T, Pálová L, Khosousi AZ, Rim KT, Gutiérrez C, Nordlund D, Jaye C, Hybertsen M, Reichman D, Flynn GW, Park J, Pasupathy AN (2013) Nano Lett 13:4659–4665

    Article  Google Scholar 

  33. Fujimoto Y, Saito S (2015) Surf Sci 634:57–61

    Article  Google Scholar 

  34. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ et al (2010) Nature 464:571–574

    Article  Google Scholar 

  35. Ci L, Song L, Jin L, Jariwala D et al (2010) Nat Mater 9:430–435

    Article  Google Scholar 

  36. Wei X, Wang MS, Bando Y, Golberg D (2011) ACS Nano 5:2916–2922

    Article  Google Scholar 

  37. Fujimoto Y, Saito S (2016) Phys Rev B 93:045402

    Article  Google Scholar 

  38. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  39. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  40. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566

    Article  Google Scholar 

  41. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  43. Tersoff J, Hamann DR (1985) Phys Rev B 31:805

    Article  Google Scholar 

  44. Okada H, Fujimoto Y, Endo K, Hirose K, Mori Y (2001) Phys Rev B 63:195324

    Article  Google Scholar 

  45. Fujimoto Y, Okada H, Endo K, Ono T, Tsukamoto S, Hirose K (2001) Mater Trans 42:2247–2252

    Article  Google Scholar 

  46. Fujimoto Y, Okada H, Inagaki K, Goto H, Endo K, Hirose K (2003) Jpn J Appl Phys 42:5267–5268

    Article  Google Scholar 

  47. Troullier N, Martins JL (1993) Phys Rev B 1991:43

    Google Scholar 

  48. Computations have been performed using Tokyo Ab-initio Program Package (TAPP) which is developed by a consortium initiated at University of Tokyo: Yamauchi J, Tsukada M, Watanabe S, Sugino O (1996) Phys Rev B 54:5586.

    Google Scholar 

  49. Arnaud B, Lebégue S, Rabiller P, Alouani M (2006) Phys Rev Lett 96:026402

    Article  Google Scholar 

  50. Zhou J, Wang Q, Sun Q, Jena P (2010) Phys Rev B 81:085442

    Article  Google Scholar 

  51. Topsakal M, Aktürk E, Ciraci S (2009) Phys Rev B 79:115442

    Article  Google Scholar 

  52. Fujimoto Y (2015) Adv Conden Matt Phys 2015:571490

    Google Scholar 

  53. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388

    Article  Google Scholar 

  54. Yang W, Yang Y, Zheng F, Zhang P (2013) Appl Phys Lett 103:183106

    Article  Google Scholar 

  55. Fujimoto Y, Saito S (2014) J Appl Phys 115:153701

    Article  Google Scholar 

  56. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Nano Lett 9:3430

    Article  Google Scholar 

  57. Fujimoto Y, Saito S (2011) Phys Rev B 84:245446

    Article  Google Scholar 

  58. Kim Y, Ihm J, Yoon E, Lee GD (2011) Phys Rev B 84:075445

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy and JSPS KAKENHI Grant No. 26390062. Computations were done at Institute for Solid State Physics, the University of Tokyo, at Cybermedia Center of Osaka University, and at Global Scientific Information and Computing Center of the Tokyo Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fujimoto, Y. (2017). Structure, Stabilities, and Electronic Properties of Smart Ceramic Composites. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_4

Download citation

Publish with us

Policies and ethics