Graph Coloring

  • Md. Saidur RahmanEmail author
Part of the Undergraduate Topics in Computer Science book series (UTICS)


Probably graph coloring concept naturally arose from its application in map coloring: given a map containing several countries, we wish to color the countries in the map in such a way that neighboring countries receive different colors to make the countries distinct. In this chapter we know about vertex coloring, edge coloring, chromatic number, chromatic index, chromatic polynomial, etc.

Supplementary material


  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Company, New York (1979)Google Scholar
  2. 2.
    Matula, D.W., Marble, G., Isaacson, J.D.: Graph colouring algorithms. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 109–122. Academic Press, New York (1972)CrossRefGoogle Scholar
  3. 3.
    Welsh, D.J.A., Powell, M.B.: An upper bound for chromatic number of a graph and its application to timetabling problem. Comput. J. 10, 85–86 (1967)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chiba, N., Nishizeki, T., Saito, N.: A linear 5-coloring algorithm of planar graphs. J. Algorithms 2(4), 317–327 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Matula, D.W., Schiloach, Y., Tarjan, R.E.: Two linear algorithms for five coloring of planar graphs. STAN-CS-80-830 (1980)Google Scholar
  6. 6.
    Frederickson, G.N.: On linear-time algorithms for five-coloring planar graphs. Inform. Process. Lett. 19(5), 219–224 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Appel, K., Haken, W.: Every map is four colourable. Bull. Am. Math. Soc. 82, 711–712 (1976)Google Scholar
  8. 8.
    Dirac, G.A.: A property of 4-chromatic graph and some remarks on critical graphs. J. Lond. Math. Soc. 27, 85–92 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3, 25–30 (1964)Google Scholar
  10. 10.
    Konig, D.: Uber graphen und ihre anwendung auf determinantentheorie und mengenlehre. Math. Ann. 77(4), 453–465 (1916)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Clark, J., Holton, D.A.: A First Look at Graph Theory. World Scientific, Singapore (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Agnarsson, G., Greenlaw, R.: Graph Theory: Modeling, Applications and Algorithms. Pearson Education Inc., New Jersey (2007)Google Scholar
  13. 13.
    Gebremedhin, A.H., Tarafdar, A., Manne, F., Pothen, A.: New acyclic and star coloring algorithms with application to computing hessians. SIAM J. Sci. Comput. 29(3), 1042–1072 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gebremedhin, A.H., Tarafdar, A., Pothen, A., Walther, A.: Efficient computation of sparse hessians using coloring and automatic differentiation. INFORMS J. Comput. 21(2), 209–223 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Serra, O., Zémor, G.: Cycle codes of graphs and mds array codes. Electron. Notes Discret. Math. 34, 95–99 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34, 553–579 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grünbaum, B.: Acyclic colorings of planar graphs. Isr. J. Math. 14, 390–408 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ochem, P.: Negative results on acyclic improper colorings. In: Proceedings of European Conference on Combinatorics (EuroComb 05), pp. 357–362 (2005)Google Scholar
  19. 19.
    Mondal, D., Nishat, R.I., Whitesides, S., Rahman, M.S.: Acyclic colorings of graph subdivisions revisited. J. Discret. Algorithms 16, 90–103 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wilson, R.J.: Introduction to Graph Theory, 4th edn. Longman, London (1996)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh

Personalised recommendations