Skip to main content

When Learning Analytics Meets MOOCs - a Review on iMooX Case Studies

Part of the Communications in Computer and Information Science book series (CCIS,volume 648)

Abstract

The field of Learning Analytics has proven to provide various solutions to online educational environments. Massive Open Online Courses (MOOCs) are considered as one of the most emerging online environments. Its substantial growth attracts researchers from the analytics field to examine the rich repositories of data they provide. The present paper contributes with a brief literature review in both prominent fields. Further, the authors overview their developed Learning Analytics application and show the potential of Learning Analytics in tracking students of MOOCs using empirical data from iMooX.

Keywords

  • Learning analytics
  • Massive open online courses (MOOCs)
  • Completionrate
  • Literature
  • Engagement
  • Evaluation
  • Prototype

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-49466-1_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-49466-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

References

  1. Alario-Hoyos, C., Muñoz-Merino, P.J., Pérez-Sanagustín, M., Delgado Kloos, C., Parada, G.H.A.: Who are the top contributors in a MOOC? Relating participants’ performance and contributions. J. Comput. Assist. Learn. 32(3), 232–243 (2016)

    CrossRef  Google Scholar 

  2. Baker, R.S., Siemens, G.: Educational Data Mining and Learning Analytics (2016).http://www.columbia.edu/~rsb2162/BakerSiemensHandbook2013.pdf. Accessed 20 Apr 2016

  3. Chatti, M., Dyckhoff, A., Schroeder, U., Thüs, H.: A reference model for learning analytics. Int. J. Technol. Enhanced Learn. 4(5/6), 318–331 (2012)

    CrossRef  Google Scholar 

  4. Clow, D.: MOOCs and the funnel of participation. In: The Third International Conference on Learning Analytics and Knowledge (LAK 2013), Leuven, Belgium, pp. 185–189. ACM (2013)

    Google Scholar 

  5. Clow, D.: The learning analytics cycle: closing the loop effectively. In: The 2nd International Conference on Learning Analytics and Knowledge (LAK 2012), Vancouver, Canada, pp. 134–138. ACM (2012)

    Google Scholar 

  6. Duval, E.: Attention please!: Learning analytics for visualization and recommendation. In: The 1st International Conference on Learning Analytics and Knowledge (LAK 11), Alberta, Canada, pp. 9–17. ACM (2011)

    Google Scholar 

  7. Ebner, M., Schön, S., Kumar, S.: Guidelines for leveraging university didactics centers to support OER uptake in German-speaking Europe. Educ. Policy Anal. Arch. 24, 39 (2016)

    CrossRef  Google Scholar 

  8. Graf, S., Ives, C., Rahman, N., Ferri, A.: AAT: a tool for accessing and analysing students’ behaviour data in learning systems. In: The 1st International Conference on Learning Analytics and Knowledge (LAK 2011), Alberta, Canada, pp. 174–179. ACM (2011)

    Google Scholar 

  9. Greller, W., Drachsler, H.: Translating learning into numbers: a generic framework for learning analytics. Educ. Technol. Soc. 15(3), 42–57 (2012)

    Google Scholar 

  10. Hollands, F.M., Tirthali, D.: MOOCs: Expectations and reality. Full report. Center for Benefit-Cost Studies of Education, Teachers College, Columbia University, NY (2014). http://cbcse.org/wordpress/wp-content/uploads/2014/05/MOOCs_Expectations_and_Reality.pdf. Accessed 19 April 2016

  11. Jordan, K.: MOOC completion rates: the data (2013). http://www.katyjordan.com/MOOCproject.html. Accessed: 12 April 2016

  12. Khalil, H., Ebner, M.: MOOCs completion rates and possible methods to improve retention - a literature review. In: Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2014, pp. 1236–1244. Chesapeake, VA: AACE (2014)

    Google Scholar 

  13. Khalil, M., Ebner, M.: A STEM MOOC for school children—what does learning analytics tell us? In: The 2015 International Conference on Interactive Collaborative Learning (ICL 2015), Florence, Italy, pp. 1217–1221. IEEE (2015)

    Google Scholar 

  14. Khalil, M., Ebner, M.: Learning analytics: principles and constraints. In: Carliner, S., Fulford, C., Ostashewski, N. (eds.) Proceedings of EdMedia: World Conference on Educational Media and Technology 2015, pp. 1789–1799. AACE, Chesapeake (2015)

    Google Scholar 

  15. Khalil, M., Ebner, M.: What is learning analytics about? A survey of different methods Used in 2013–2015. In: The Smart Learning Conference, Dubai, UAE, pp. 294–304. Dubai: HBMSU Publishing House (2016)

    Google Scholar 

  16. Khalil, M., Ebner, M.: What massive open online course (MOOC) stakeholders can learn from learning analytics? In: Spector, M., Lockee, B., Childress, M. (eds.) Learning, Design, and Technology: An International Compendium of Theory, Research, Practice, and Policy, pp. 1–30. Springer, Heildelberg (2016). http://dx.doi.org/10.1007/978-3-319-17727-4_3-1

    CrossRef  Google Scholar 

  17. Khalil, M., Kastl, C., Ebner, M.: Portraying MOOCs learners: a clustering experience using learning analytics. In: The European Stakeholder Summit on experiences and best practices in and around MOOCs (EMOOCS 2016), Graz, Austria, pp. 265–278 (2016)

    Google Scholar 

  18. Kizilcec, R.F., Piech, C., Schneider, E.: Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In: The Third International Conference on Learning Analytics and Knowledge (LAK 2013), Leuven, Belgium, pp. 170–179. ACM (2013)

    Google Scholar 

  19. Knox, J.: From MOOCs to learning analytics: scratching the surface of the ‘visual’. eLearn. 2014(11) (2014). ACM

    Google Scholar 

  20. Kopp, M., Ebner, M.: iMooX - Publikationen rund um das Pionierprojekt. Verlag Mayer, Weinitzen (2015)

    Google Scholar 

  21. Lackner, E., Ebner, M., Khalil, M.: MOOCs as granular systems: design patterns to foster participant activity. eLearning Pap. 42, 28–37 (2015)

    Google Scholar 

  22. Lackner, E., Khalil, M., Ebner, M.: How to foster forum discussions within MOOCs: A case study. Int. J. Acad. Res. Educ. (in press)

    Google Scholar 

  23. McAulay, A., Tewart, B., Siemens, G.: The MOOC model for digital practice. Charlottetown: University of Prince Edward Island (2010). http://www.elearnspace.org/Articles/MOOC_Final.pdf

  24. Moissa, B., Gasparini, I., Kemczinski, A.: A systematic mapping on the learning analytics field and its analysis in the massive open online courses context. Int. J. Distance Educ. Technol. 13(3), 1–24 (2015)

    CrossRef  Google Scholar 

  25. Online Course Report.: State of the MOOC 2016: A Year of Massive Landscape Change For Massive Open Online Courses (2016). http://www.onlinecoursereport.com/state-of-the-mooc-2016-a-year-of-massive-landscape-change-for-massive-open-online-courses/. Accessed 18 April 2016

  26. Papamitsiou, Z., Economides, A.A.: Learning analytics for smart learning environments: a meta-analysis of empirical research results from 2009 to 2015. In: Spector, M.J., Lockee, B.B., Childress, M.D. (eds.) Learning, Design, and Technology, pp. 1–23. Springer, Cham (2016)

    CrossRef  Google Scholar 

  27. Siemens, G.: A learning theory for the digital age. Instr. Technol. Distance Educ. 2(1), 3–10 (2005)

    Google Scholar 

  28. Tseng, S.F., Tsao, Y.W., Yu, L.C., Chan, C.L., Lai, K.R.: Who will pass? Analyzing learner behaviors in MOOCs. Res. Pract. Technol. Enhanced Learn. 11(1), 1–11 (2016)

    CrossRef  Google Scholar 

  29. Veletsianos, G., Shepherdson, P.: A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. Int. Rev. Res. Open Distrib. Learn., 17(2) (2016)

    Google Scholar 

  30. Wachtler, J., Khalil, M., Taraghi, B., Ebner, M.: On using learning analytics to track the activity of interactive MOOC videos. In: Proceedings of the LAK 2016 Workshop on Smart Environments and Analytics in Video-Based Learning, Edinburgh, Scotland, pp. 8–17. CEUR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Khalil, M., Ebner, M. (2016). When Learning Analytics Meets MOOCs - a Review on iMooX Case Studies. In: Fahrnberger, G., Eichler, G., Erfurth, C. (eds) Innovations for Community Services. I4CS 2016. Communications in Computer and Information Science, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-49466-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49466-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49465-4

  • Online ISBN: 978-3-319-49466-1

  • eBook Packages: Computer ScienceComputer Science (R0)