Towards Adaptive Ambient In-Vehicle Displays and Interactions: Insights and Design Guidelines from the 2015 AutomotiveUI Dedicated Workshop

  • Andreas Löcken
  • Shadan Sadeghian Borojeni
  • Heiko Müller
  • Thomas M. Gable
  • Stefano Triberti
  • Cyriel Diels
  • Christiane Glatz
  • Ignacio Alvarez
  • Lewis Chuang
  • Susanne Boll
Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

Informing a driver of a vehicle’s changing state and environment is a major challenge that grows with the introduction of in-vehicle assistant and infotainment systems. Even in the age of automation, the human will need to be in the loop for monitoring, taking over control, or making decisions. In these cases, poorly designed systems could lead to needless attentional demands imparted on the driver, taking it away from the primary driving task. Existing systems are offering simple and often unspecific alerts, leaving the human with the demanding task of identifying, localizing, and understanding the problem. Ideally, such systems should communicate information in a way that conveys its relevance and urgency. Specifically, information useful to promote driver safety should be conveyed as effective calls for action, while information not pertaining to safety (therefore less important) should be conveyed in ways that do not jeopardize driver attention. Adaptive ambient displays and peripheral interactions have the potential to provide superior solutions and could serve to unobtrusively present information, to shift the driver’s attention according to changing task demands, or enable a driver to react without losing the focus on the primary task. In order to build a common understanding across researchers and practitioners from different fields, we held a “Workshop on Adaptive Ambient In-Vehicle Displays and Interactions” at the AutomotiveUI‘15 conference. In this chapter, we discuss the outcomes of this workshop, provide examples of possible applications now or in the future and conclude with challenges in developing or using adaptive ambient interactions.

References

  1. Alessandretti, G., Amditis, A., Metzner, S., et al. (2014). InteractIVe—Final Report. Deliberable D1.9, version 1.2. http://www.interactive-ip.eu/index.dhtml/docs/interactIVe_SP1_20140506v1.2-D19-Final_Report.pdf.
  2. Asif, A., & Boll, S. (2010). Where to turn my car? Comparison of a tactile display and a conventional car navigation system under high load condition. In Proceedings of the 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 64–71). New York, NY, USA: ACM.Google Scholar
  3. Diels, C., & Bos, J. E. (2015). User interface considerations to prevent self-driving carsickness (pp 14–19). ACM Press.Google Scholar
  4. Diels, C., & Bos, J. E. (2016). Self-driving carsickness. Transport in the 21st Century: The Application of Human Factors to Future User Needs Part B, 53, 374–382. doi:10.1016/j.apergo.2015.09.009.
  5. Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems: Situation awareness. Hum. Factors, 37, 32–64. doi:10.1518/001872095779049543.CrossRefGoogle Scholar
  6. Fiergermann, S. (2016). You’ll be able to call a self-driving car to pick you up, as Lyft and GM challenge Uber. In Mashable. http://mashable.com/2016/01/04/lyft-gm-self-driving-cars/#aCKfVe2Hvqq3. Accessed 23 Jun 2016.
  7. Gable, T. M., May, K. R., & Walker, B. N. (2014). Applying popular usability heuristics to gesture interaction in the vehicle. In Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 1–7). New York, NY, USA: ACM.Google Scholar
  8. Glatz, C., Bülthoff, H. H., & Chuang, L. L. (2015). Attention enhancement during steering through auditory warning signals. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/glatz.pdf.
  9. Haeuslschmid, R., & Shou, Y. (2015). Towards a placement strategy for windshield displays. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/haeuslschmid.pdf.
  10. Hendrie, M., Alvarez, I., & Hooker, B. (2015). Prototyping adaptive automotive UX: A design pedagogy approach. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/hendrie.pdf.
  11. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In Attention and performance IX (Proceedings of the 9th International Symposium on Attention and Performance, Cambridge, July 13–18, 1980). Erlbaum, pp 187–203.Google Scholar
  12. Leibowitz, H. W., Shupert, C. L., & Post, R. B. (1984). The two modes of visual processing: Implications for spatial orientation. In Peripheral vision horizon display (PVHD).Google Scholar
  13. Löcken, A. (2015). AmbiCar: Ambient light patterns in the car. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/loecken.pdf.
  14. Löcken, A., Heuten, W., & Boll, S. (2015). Supporting lane change decisions with ambient light. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 204–211). New York, NY, USA: ACM.Google Scholar
  15. Manca, L., de Winter, J. C. F., & Happee, R. (2015). Visual displays for automated driving: A survey. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/manca.pdf.
  16. Mankoff, J., Dey, A. K., Hsieh, G., et al. (2003). Heuristic evaluation of ambient displays. In G. Cockton, & P. Korhonen (Eds.), Proceedings of the Conference on Human Factors in Computing Systems—CHI’03 (p. 169). New York, USA: ACM Press.Google Scholar
  17. Matthews, T., Dey, A. K., Mankoff, J., et al. (2004). A toolkit for managing user attention in peripheral displays. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology—UIST’04 (pp. 247–256). New York, USA: ACM Press.Google Scholar
  18. Michon, J. A. (1985). A critical view of driver behavior models: What do we know, what should we do? In L. Evans, & R. C. Schwing (Eds.), Human behavior and traffic safety (pp. 485–524). Springer, US.Google Scholar
  19. Mori, M., MacDorman, K., & Kageki, N. (2012). The uncanny valley (from the field). IEEE Robotics and Automation Magazine, 19, 98–100. doi:10.1109/MRA.2012.2192811.CrossRefGoogle Scholar
  20. Müller, H., Löcken, A., Heuten, W., & Boll, S. (2014). Sparkle: An ambient light display for dynamic off-screen points of interest. In Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational (pp. 51–60). New York, NY, USA: ACM.Google Scholar
  21. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330. doi:10.1037/0096-1523.15.2.315.Google Scholar
  22. Nees, M. A., & Walker, B. N. (2011). Auditory displays for in-vehicle technologies. Reviews of Human Factors and Ergonomics, 7, 58–99. doi:10.1177/1557234X11410396.CrossRefGoogle Scholar
  23. Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In Attention (pp. 155–189). Hove, England: Psychology Press/Erlbaum (UK) Taylor & Francis.Google Scholar
  24. Pfromm, M., Cieler, S., & Bruder, R. (2013). Driver assistance via optical information with spatial reference. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (pp. 2006–2011). IEEE.Google Scholar
  25. Pomarjanschi, L., Dorr, M., Bex, P. J., & Barth, E. (2013). Simple gaze-contingent cues guide eye movements in a realistic driving simulator. In B. E. Rogowitz, T. N. Pappas, & H. de Ridder (Eds.), Human vision and electronic imaging XVIII (pp 865110-1–865110-8).Google Scholar
  26. Riener, A., Pfleging, B., Jeon, M., et al. (2014). Social, natural, and peripheral interactions: Together and separate. In Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp 1–6). New York, NY, USA: ACM.Google Scholar
  27. Roda, C. (2011). Human attention and its implications for human–computer interaction. In C. Roda (Ed.), Human attention in digital environments (pp 11–62). Cambridge University Press.Google Scholar
  28. Sadeghian Borojeni, S. (2015). Take me where I was: Assisting In-vehicle interruption management with peripheral cues. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI’15. http://www.auto-ui.org/15/p/workshops/5/sadeghianborojeni.pdf.
  29. Snowden, R., Snowden, R. J., Thompson, P., & Troscianko, T. (2012). Basic vision: An introduction to visual perception. OUP Oxford.Google Scholar
  30. The World Café Community Foundation. (2016). The world cafe. In World cafe. http://www.theworldcafe.com/. Accessed 10 Jul 2016.
  31. Toppan, R., & Chiesa, M. (2015). Integrating a touchless UI in the automotive environment. In Workshop on Adaptive Ambient In-Vehicle Displays and Interactions in AutomotiveUI 15. http://www.auto-ui.org/15/p/workshops/5/toppan.pdf.
  32. Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50, 449–455. doi:10.1518/001872008X288394.CrossRefGoogle Scholar
  33. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3, 159–177.CrossRefGoogle Scholar
  34. Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Löcken
    • 1
  • Shadan Sadeghian Borojeni
    • 2
  • Heiko Müller
    • 1
  • Thomas M. Gable
    • 3
  • Stefano Triberti
    • 4
  • Cyriel Diels
    • 5
  • Christiane Glatz
    • 6
  • Ignacio Alvarez
    • 7
  • Lewis Chuang
    • 6
  • Susanne Boll
    • 1
  1. 1.University of OldenburgOldenburgGermany
  2. 2.OFFIS – Institute for Information TechnologyOldenburgGermany
  3. 3.Georgia Institute of TechnologyAtlantaUSA
  4. 4.Università Cattolica del Sacro CuoreMilanItaly
  5. 5.Coventry UniversityCoventryUK
  6. 6.Max Planck Institute for Biological CyberneticsTübingenGermany
  7. 7.Intel LabsHillsboroUSA

Personalised recommendations