Retrospective and Future Automotive Infotainment Systems—100 Years of User Interface Evolution

  • Gerrit Meixner
  • Carina Häcker
  • Björn Decker
  • Simon Gerlach
  • Anne Hess
  • Konstantin Holl
  • Alexander Klaus
  • Daniel Lüddecke
  • Daniel Mauser
  • Marius Orfgen
  • Mark Poguntke
  • Nadine Walter
  • Ran Zhang
Part of the Human–Computer Interaction Series book series (HCIS)


The history of automotive HMI development reveals that the development of new interactive in-car functionalities (such as infotainment systems) has often been influenced by upcoming new technologies that customers got used to in their daily lives. Examples of such technologies include the first in-car radio, which was introduced around 1922, or the first in-car phone, which was introduced around 1952. Today, a car without such functionalities is hard to imagine and the automotive industry is aiming to develop and integrate more and more innovative functionality to stay competitive on the market. The development of such functions is motivated by the construction of safer, more efficient, and more comfortable vehicle systems. Current trends in the area of in-car infotainment applications include, for instance, Internet-based applications or social network applications, whereas extendable, hybrid, adaptive, or even personalized HMI are emerging as future trends. Not only technologies have evolved throughout history, the development processes themselves have also been adapted continuously due to the challenges the automotive industry had to face with new technologies. Thus, the authors have summarized their experiences, their knowledge, and the results of literature studies in this article which covers the history of automotive HMI development from the past in 1922 to the present with an outlook on upcoming trends for future automotive user interfaces.


Navigation System Unify Modeling Language Adaptive Cruise Control Human Machine Interface Center Console 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



First and foremost, the help of all the people involved in this project and, more specifically, the authors and reviewers who contributed their time and expertise to this book chapter should be acknowledged. Furthermore, a special thanks goes to Mister Horst Koch from Koch KLASSIK Automobil GmbH for providing his old timers for illustrations in this book chapter.

Parts of the research described in this paper were conducted within the project automotiveHMI. automotiveHMI was funded by the German Federal Ministry of Economics and Technology.


  1. Amditis, A. et al. (2010). Towards the automotive HMI of the future: Overview of the AIDE-integrated project results. IEEE Transactions on Intelligent Transportation Systems, 11(3) s.l.:IEEE, 567–578.Google Scholar
  2. Anderson, M. (2015a). 6 facts about Americans and their smartphones.
  3. Anderson, M. (2015b). Technology device ownership: 2015.
  4. Ariza, M., Zato Recellado, J. G., & Naranjo Hernández, J. E. (2009). HMI Design in Vehicles based in Usability and Accessibility Concepts. s.l., s.n.Google Scholar
  5. AT&T. (2016). AT&T. Retrieved June 07, 2016 from
  6. ATZ/MTZ. (2007). Audi A4. Sonderausgabe von ATZ und MTZ.Google Scholar
  7. Audi, A. G. (2001) Konzeptstudie Audi Avantissimo. Retrieved April 04, 2016 from
  8. Audi, A. G. (2009). Der neue Audi A8—Es werde Licht. Audi mobil Extra.Google Scholar
  9. Audi, A. G. (2015). Audi virtual cockpit. Retrieved June 20, 2016 from
  10. AutomotiveHMI. (2014). The automotiveHMI Project. Retrieved May 11, 2016 from
  11. Bader, M., & Fallast, M. (2012). The development process as a complex and interdisciplinary team based challenge. New Technologies—Trends, Innovations and Research s.l.:InTech, 327–347.Google Scholar
  12. Blessing, J., Feltgen, C., & Green, M. (2010). Vom Bediensystem zu HMI-Signaturen. ATZelektronik 21–25.Google Scholar
  13. Bock, C. (2007). Model-driven HMI development: Can meta-CASE tools do the job? In HICSS 2007. 40th Annual Hawaii International Conference on System Sciences, 2007 (Vol. 01, p. 287b).Google Scholar
  14. Bose, R., Brakensiek, J., & Park, K.-Y. (2010). Terminal mode—transforming mobile devices into automotive application platforms. In The Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 148–155).Google Scholar
  15. Bosshart, L., & Hellmueller, L. (2009). Pervasive entertainment, ubiquitous entertainment. Communication Research Trends, 28, 3–19.Google Scholar
  16. Bratzel, S. (2011). „i-Car“: Die junge Generation und das vernetzte Auto. Eine empirische Studie zu den Einstellungen und Verhaltensmustern der 18–25 Jährigen in Deutschland. Bergisch Gladbach: Center of Automotive Management.Google Scholar
  17. Brostroem, R., Engstroem, J., Agnvall, A., & Markkula, G. (2006). Towards the next generation intelligent driver information system (IDIS): The Volvo car interaction manager concept. In Proceedings of the 13th ITS World Congress.Google Scholar
  18. Burghardt, S. (2009). Anzeigekonzept für ein frei program-mierbares Kombinationsinstrument. Fachbereich Informatik der Universität Koblenz-Landau: s.n.Google Scholar
  19. Cisco. (2015). The Zettabyte Era: Trends and Analysis. Retrieved May 10, 2016 from
  20. Commission of the European Communities. (2013). Commission recommendation of 22 December 2006 on safe and efficient in-vehicle information and communication systems: Update of the European Statement of Principles on human machine interface. s.l.:s.n.Google Scholar
  21. Consulting, M. M., Fraunhofer-Institut für Produktionstechnik und Automatisierung -IPA-, S., & Fraunhofer-Institut für Materialfluss und Logistik -IML-, D. (2004). Future Automotive Industry Structure (FAST) 2015. Frankfurt: Henrich Druck + Medien GmbH.Google Scholar
  22. Dick, M. (2011). Im Interview: Audi-Entwicklungsvorstand Michael Dick [Interview] (April 03, 2011).Google Scholar
  23. Drews, F. A., Pasupathi, M., & Strayer, D. L. (2008). Passenger and cell phone conversations in simulated driving. Journal of Experimental Psychology, 18(11), 392–400.Google Scholar
  24. Duan, L. (2012). Model-based testing of automotive HMIs with consideration for product variability. München: s.n.Google Scholar
  25. Elektronik Automotive. (2002). Elektronik Automotive. Sonderausgabe Audi A8. Google Scholar
  26. eMarketer. (2016). Number of smartphone users in the United States from 2010 to 2019 (in millions).
  27. Ersal, T., et al. (2010). IEEE Transactions on Intelligent Transportation Systems, 27(05), 692–701.CrossRefGoogle Scholar
  28. Feld, M., & Müller, C. (2011). The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 79–86).Google Scholar
  29. Fleischmann, T. (2007). HCI, 8, 31–39.Google Scholar
  30. Ford. (2016). Retrieved April 26, 2016 from
  31. Frost & Sullivan. (2016). Anzahl der weltweiten Carsharing-Nutzer von 2006 bis 2014 (in Millionen). Retrieved May 10, 2016 from
  32. Ganzhorn, M., Diederichs, F. J., & Widlroither, H. (2011). Enhancing the reproduction of road signs in automotive HMIs to protect children. In 11th International Conference on Intelligent Transport Systems Telecommunications, ITST 2011 (pp. 338–344).Google Scholar
  33. Gesellschaft für Unterhaltungs- und Kommunikationselektronik (Hrsg.). (2006). Ce im Auto—Vom ersten Autoradio zum mobilen Multimedia-Center. p.
  34. Gesellschaft für Unterhaltungs- und Kommunikationselektronik. (2010). CE im Auto.
  35. Giacchetto, A., & Gregorio, A. (2015). How to Respond to Declining Car Ownership. Retrieved April 19, 2016 from
  36. Governors Highway Safety Association. (2011). Distracted driving: What research shows and what states can do. Washington, D.C.: Governors Highway Safety Association (GHSA).Google Scholar
  37. Gow, G. A., & Smith, R. K. (2006). Mobile and wireless communications: An introduction. UK: McGraw-Hill Education.Google Scholar
  38. Häcker, C. (2015). Audi TT digital cockpit. s.n.: Heilbronn.Google Scholar
  39. Häcker, C. (2016). History of HMIs from Mercedes and Audi (1993–2016). Heilbronn: s.n.Google Scholar
  40. Heisterkamp, P. (2001). Linguatronic product-level speech system for Mercedes-Benz cars. In: Proceedings of the First International Conference on Human Language Technology Research (pp. 1–2). Stroudsburg, PA, USA: Association for Computational Linguistics.Google Scholar
  41. Hess, S. et al. (2012a). Standardizing model-based IVI development in the German automotive industry. New Hampshire, USA: s.n.Google Scholar
  42. Hess, S. et al. (2012b). Standardizing model-based IVI development in the German automotive industry. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI-12), 4th, September 17–19, Portsmouth, New Hampshire, USA, 17–19 09.Google Scholar
  43. Holl, K., Hambsch, D., & Bröckl, U. (2011). Effektive und effiziente Fahrzeuginteraktion durch die Verwendung des digitalen Stifts. i-com Zeitschrift für interaktive und kooperative Medien, 10(1), 74–79.Google Scholar
  44. Hudi, R. (2010). Wir werden noch effizienter. VDI-FVT-Jahrbuch, 2010, 76–77.Google Scholar
  45. Hudi, R. (2014). Audi-Connect-Manager Hudi: “Es muss das Beste auf dem Markt sein” [Interview] (July 11 2014).Google Scholar
  46. Hüttenrauch, M., & Baum, M. (2008). Effiziente Vielfalt: Die dritte Revolution in der Automobilindustrie. s.l.: Springer.Google Scholar
  47. IQPC. (2016). 3rd International Conference Automotive Cockpit HMI USA 2016. Retrieved April 25, 2016 from
  48. ISTQB. (2013). Retrieved May 09, 2016 from
  49. Jørgensen, A. H., & Myers, B. A. (2008). User interface history. New York: ACM.CrossRefGoogle Scholar
  50. Kellar, M. (2007). An examination of user behaviour during web information tasks. Canada: Ph.D. thesis Dalhousie Univ.Google Scholar
  51. Kern, D., & Schmidt, A. (2009). Design space for driver-based automotive user interfaces. In AutomotiveUI ‘09: Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 3–10).Google Scholar
  52. Kurfess, T. R. (2011). The Growing Role of Electronics in Automobiles: A Timeline of Electronics in Cars.
  53. Lamel, L., Minker, W., & Paroubek, P. (2000). Towards best practice in the development and evaluation of speech recognition components of a spoken language dialog system. Natural Language Engineering (pp. 305–322). New York: Cambridge University Press.Google Scholar
  54. Mauser, D., Klaus, A., & Holl, K. (2013a). Towards a GUI test model using state charts and programming code. Testing Software and Systems 271–276.Google Scholar
  55. Mauser, D., Klaus, A., Holl, K., & Zhang, R. (2013b). GUI failures of in-vehicle infotainment: analysis, classification, challenges, and capabilities. International Journal on Advances in Software 142–154.Google Scholar
  56. Meixner, G. (2013a). Maserati Indy America 4700 (1972). Heilbronn: s.n.Google Scholar
  57. Meixner, G. (2013b). Mercedes-Benz 22/50 Open Tourer. Heilbronn: s.n.Google Scholar
  58. Meixner, G. (2013c). Mercedes-Benz 300 SL (1955). Heilbronn: s.n.Google Scholar
  59. Meixner, G. (2013d). Packard 120 (1936). Heilbronn: s.n.Google Scholar
  60. Meixner, G., Orfgen, M., & Kümmerling, M. (2013). Evaluation of user interface description languages for model-based user interface development in the German automotive industry. HCI, 1, 411–420.Google Scholar
  61. Meixner, G., Paternò, F., & Vanderdonckt, J. (2011). Past, present, and future of model-based user interface development. i-com 2–11.Google Scholar
  62. Meroth, A., & Tolg, B. (2008). Infotainmentsysteme im Kraftfahrzeug (p. 364). Wiesbaden: Vieweg + Teubner Verlag.Google Scholar
  63. Müller, T. (2011). Die Revolution des Kundenerlebnisses. Elektronik im Kraftfahrzeug/Electronic Systems for Vehicles 150–168.Google Scholar
  64. Myers, B. A. (1998). A brief history of human computer interaction technology. In: Interactions (pp. 44–54). Pittsburgh: ACM.Google Scholar
  65. Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software tools. ACM Transactions on Computer-Human Interaction (TOCHI)—Special Issue on Human-Computer Interaction in the New Millennium, 03, 3–28.Google Scholar
  66. National Safety Council. (2015). Annual Estimate of Cell Phone Crashes 2013. Retrieved April 25, 2016 from
  67. Ougier, F., & Terrier, F. (2010). Eclipse based architecture of the EDONA platform for automotive system development. Toulouse, Conference ERTS 2010.Google Scholar
  68. Perrin, A., & Duggan, M. (2015). Pew Research Center.–2015/.
  69. Pew Research Center. (2014). Pew Research Center.
  70. Pew Research Center. (2016). Pew Research Center.
  71. Reich, B. (2005). Abstrakte Beschreibung automobiler HMI-Systeme und deren Erweiterung für neue Dienste. s.l.: Institut für Medieninformatik, Universität Ulm.Google Scholar
  72. Robert Bosch GmbH. (2013). Retrieved April 04, 2016 from
  73. Sauerzapf, S., Mutschler, R., & Krstic, Z. (2010). Innovative Bedienkonzepte—Mobile Endgeräte im Fahrzeug. ATZ elektronik 18–23.Google Scholar
  74. Schönfeld, A., Stümpfle, M., & Freitag, R. (2011). Mobiles Internet und automotive APPs. Elektronik im Kraftfahrzeug/Electronic Systems for Vehicles 255–263.Google Scholar
  75. Schuller, B., et al. (2006). Speech communication and multimodal interfaces. Advanced man-machine interaction (pp. 141–190). Berlin: Springer.CrossRefGoogle Scholar
  76. Selwyn, N. (2009). The digital native: myth and reality. In: Publication Cover (pp. 364–379). London: s.n.Google Scholar
  77. Shull, F. et al. (2002). What we have learned about fighting defects. In Proceedings. Eighth IEEE Symposium on Software Metrics, 2002 (pp. 249–258).Google Scholar
  78. Smith, A. (2011). Technical Report Pew Internet & American Life Project.
  79. Stevens, A. et al. (2002). Design guidelines for safety of in-vehicle information systems. s.l.: s.n.Google Scholar
  80. Stolle, R., Benedek, T., Knuechel, C., & Heinecke, H. (2005). Challenges in automated model-based HMI testing. 35. Jahrestagung der Gesellschaft für Informatik e.V. (GI) 186–190.Google Scholar
  81. Stueber, G. L. (2011). Principles of mobile communication (3rd ed.). New York: Springer Publishing Company.Google Scholar
  82. Tièschky, S., Hamberger, W., Schröder, J., & Mauter, G. (2010). Audi MMI—von der Idee zum Produkt. Elektronik Automotive (Sonderausgabe Audi A8) 10–18.Google Scholar
  83. von Zezschwitz, E., et al. (2014). Secondary tasks. Munich: LMU.Google Scholar
  84. Wheen, A. (2011). Dot-Dash to Dot.Com: how modern telecommunications evolved from the telegraph to the internet. New York: Springer.Google Scholar
  85. White, J. B. (2010). The Wall Street Journal. Retrieved April 21, 2016 from
  86. Wikimedia Commons; User: Guido Gybels. (2008). Wikimedia Commons. Retrieved June 20, 2016 from
  87. Wikimedia Commons; User: Ranger 1. (2016). Wikimedia Commons. Retrieved May 23, 2016 from
  88. Wikimedia Commons; User: Yeti.bigfoot. (2009). Wikimedia Commons. Retrieved May 23, 2016 from
  89. Wikipedia. (2015). Infotainmentsystem. Retrieved April 20, 2016 from
  90. Wood, R. (1988). Head up displays system. U.S. Patent No. 4,763,900.Google Scholar
  91. Zhang, R. (2015). Referenzarchitektur zur Erhöhung der Flexibilität in der GUI-Applikation-Anbindung für automotive Infotainmentsysteme. Kaiserslautern: Techn. Univ.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gerrit Meixner
    • 1
  • Carina Häcker
    • 1
  • Björn Decker
    • 2
  • Simon Gerlach
    • 3
  • Anne Hess
    • 4
  • Konstantin Holl
    • 4
  • Alexander Klaus
    • 4
  • Daniel Lüddecke
    • 5
  • Daniel Mauser
    • 6
  • Marius Orfgen
    • 7
  • Mark Poguntke
    • 8
  • Nadine Walter
    • 9
  • Ran Zhang
    • 10
  1. 1.UniTyLab, Heilbronn UniversityHeilbronnGermany
  2. 2.Comlet Verteilte Systeme GmbHZweibrückenGermany
  3. 3.Vorentwicklung Connected Car and InfotainmentWolfsburgGermany
  4. 4.Fraunhofer IESEKaiserslauternGermany
  5. 5.Group Research/Human Factors and HMIWolfsburgGermany
  6. 6.Communications (INST-ICM/BSV-BS), Bosch Software Innovations GmbHWaiblingenGermany
  7. 7.Innovative Factory Systems (IFS), DFKIKaiserslauternGermany
  8. 8.Advanced User Experience EngineeringMercedes-Benz Research and Development North America, Inc.SunnyvaleUSA
  9. 9.Advanced Development Car Multimedia, Robert Bosch GmbHLeonbergGermany
  10. 10.Diesel Gasoline Systems (DGS-EC/ECD2), Robert Bosch GmbHStuttgartGermany

Personalised recommendations